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resources for plants, but plants may also compete for
pollinators or for space. Water, food, and mates are pos-
sible sources of competition for animals. In some ani-
mals, competition for space may involve many types of
specific requirements, such as nesting sites, wintering
sites, or resting sites that are safe from predators.
Species must share a common interest in one or more
resources before they can be potential competitors.

Several aspects of the process of competition must be
kept clear. First, animals need not see or hear their com-
petitors. A species that feeds by day on a plant may com-
pete with a species that feeds at night on the same plant if
the plant is in short supply. Second, many or most of the
organisms that an animal sees or hears will not be its com-
petitors. This is true even if resources are shared by the or-
ganisms. Thus, even though oxygen is a resource shared by
most terrestrial organisms, there is no competition for it
among these organisms because this resource is super-
abundant. Third, competition in plants usually occurs
among individuals rooted in position and therefore differs
from competition among mobile animals. The spacing of
individuals is thus more important in plant competition.

Theories on Competition 
for Resources
Mathematical models have been used extensively to
build hypotheses about what happens when two
species live together, either sharing the same food, oc-
cupying the same space, or preying on or parasitizing
the other. The classical models of these phenomena are
the Lotka-Volterra equations, which were derived in-
dependently by Lotka (1925b) in the United States and
Volterra (1926) in Italy. More mechanistic models by

Tilman (1982, 1990) have provided another important
perspective on competition theory.

Mathematical Model 
of Lotka and Volterra
Lotka and Volterra each derived two different sets of
equations: One set applies to predator-prey interac-
tions, the other set to nonpredatory situations involving
competition for food or space. We are concerned here
only with their second set of equations for nonpreda-
tory competition.

The Lotka-Volterra equations, which describe com-
petition between organisms for food or space, are based
on the logistic curve. We have seen that the logistic
curve is described by the following simple logistic equa-
tions: for species 1,

(1)

and for species 2,

(2)

where N1 � population size of species 1
t � time

r1 � intrinsic capacity for increase of species 1
K1 � asymptotic density or “carrying

capacity” for species 1

and these variables are similarly defined for species 2.
We can visualize two species interacting—that is,

affecting the population growth of each other—with
the following simple analogy illustrated in Figure 1.

dN2

dt
� r2N2 a

K2 � N2

K2
b

dN1

dt
� r1N1 a

K1 � N1

K1
b
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Figure 1 Schematic illustration of the resources two species utilize in competition.
(a) Species 1 has a high utilization rate, and only 16 individuals can be supported in this
habitat. (b) Species 2 uses much less of this resource per individual, and 64 individuals can
be supported. (c) In competition these two species vie for the common resource. The
resource might be nitrogen in the soil for two competing plant species, or a particular
food source for two animal species. The size of the box represents the amount of the
resource that is available for both species.
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Figure 2 Changes in population size of species 1 when
competing with species 2. Populations in the yellow area will
increase in size and will come to equilibrium at some point on
the blue diagonal line. The sizes of the arrows indicate the
approximate rate at which the population will move toward the
blue diagonal line. The blue diagonal line represents the zero
growth isocline, all those points at which dN1/dt � 0.

Consider the environment to contain a certain amount
of a limiting resource, such as nitrogen in the soil. Species
1 uses this resource, and the environment will hold K1 in-
dividuals of this species (shown in green) when all the re-
source is being monopolized. But some of this resource
can also be used by a competitor, species 2 (shown in yel-
low), which in this example needs much less of the re-
source to support one individual.

In most cases, the amount of resource used by one in-
dividual of species 2 is not exactly the same as that used by
one individual of species 1, as illustrated in Figure 1. For
example, species 2 may be smaller and require less of the
critical resource that is contained in the environment. For
this reason, we need a factor to convert species 2 individu-
als into an equivalent number of species 1 individuals. For
this competitive situation, we define

(3)

where α is the conversion factor for expressing species 2
in units of species 1. This is a very simple assumption,
which states that under all conditions of density there is a
constant conversion factor between the competitors. We
can now write the competition equation for species 1 as

(4)

This equation is mathematically equivalent to the simple
analogy we just developed. Figure 2 shows this graphi-
cally for the equilibrium conditions, when dN1/dt is zero.

dN1

dt
� r1N1 a

K1 � N1 � aN2

K1
b

species 1 individuals
aN2 � equivalent number of

The two extreme cases are shown at the ends of the diag-
onal line in Figure 2. All the “space” for species 1 is
used (1) when there are K1 individuals of species 1,
or (2) when there are K1/a individuals of species 2. Popu-
lations of species 1 below this line will increase in size
until they reach the diagonal line, which represents all
points of equilibrium and is called the isocline. Note that
we do not yet know where along this diagonal we will
finish, but it must be somewhere at or between the
points N1 � K1 and N1 � 0.

Now we can retrace our steps and apply the same
line of argument to species 2. We now have a volume of
K2 spaces to be filled by N2 individuals but also by N1

individuals. Again we must convert N1 into equivalent
numbers of N2, and we define

(5)

where β is the conversion factor for expressing species 1
in species 2 units.1 We can now write the competition
equations for the second species, as follows:

(6)

Figure 3 shows this equation graphically for the equi-
librium conditions when dN2/dt is zero.

dN2

dt
� r2N2 a

K2 � N2 � bN1

K2
b

species 2 individuals
bN1 � equivalent number of

P
o

p
u

la
ti

o
n

 s
iz

e 
o

f 
sp

ec
ie

s 
2

Population size of species 1

K2

0 K2/β

Zero
isocline

Figure 3 Changes in population size of species 2 when
competing with species 1. Populations in the yellow area
will increase in size and will come to equilibrium at some
point on the blue zero growth isocline, all those points at
which dN2/dt � 0. The sizes of the arrows indicate the
approximate rates at which the population will move toward
the isocline.

1a and b can be written more generally as aij, the effect of species j on
species i. Thus a � a12 and b� a21.
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Now if we put these two species together, what might
be the outcome of this competition? Only three out-
comes are possible: (1) Both species coexist, (2) species 1
becomes extinct, or (3) species 2 becomes extinct. Intu-
itively, we would expect that species 1, if it had a very
strong depressing effect on species 2, would win out
and force species 2 to become extinct. The converse
would apply for the situation in which species 2
strongly affected species 1. In a situation in which nei-
ther species has a very strong effect on the other, we

might expect them to coexist. These intuitive ideas can
be evaluated mathematically in the following way.

Solve the following simultaneous equations at
equilibrium:

(7)

This can be done by superimposing figures (such as
Figures 2 and Figure 3) and adding the arrows by
vector addition. Figure 4 shows the four possible

dN1

dt
� 0 �

dN2

dt
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Figure 4 Four possible outcomes of competition between two species. Blue arrows
indicate direction of change in populations, and red dots and red arrows indicate the final
equilibrium points. In the yellow zone, both species can increase; in the green zone, only
species 1 can increase; in the orange zone, only species 2 can increase; and in the white
zone both species must decrease.
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geometric configurations. In each of these, the vector ar-
rows have been abstracted, and the results can be traced
by following the arrows. Species 1 will increase in yel-
low and green areas, and species 2 will increase in yel-
low and orange areas. There are a number of principles
to keep in mind in viewing these kinds of curves. First,
there can be no equilibrium of the two species unless
the diagonal curves cross each other. Thus, in cases 1
and 2, there can be no equilibrium, because one
species is able to increase in a zone in which the sec-
ond species must decrease. These cases lead to the ex-
tinction of one competitor. Second, if the diagonal
lines cross, the equilibrium point represented by their
crossing may be either a stable point or an unstable
point. It is stable if the vectors about the point are di-
rected toward the point, and unstable if the vectors are
directed away from it. In case 4, the point where the
two lines cross is unstable because if in response to
some small disturbance the populations move slightly
downward, they reach a zone in which N1 can increase
but N2 can only decrease, which results in species 1
coming to an equilibrium by itself at K1. Similarly,
slight movement upward will lead to an equilibrium
of only species 2 at K2.

Tilman’s Model
The Lotka-Volterra equations describe competition only
by its results—that is, according to changes in the popu-
lation sizes of the two competing species. In the Lotka-
Volterra models, no mechanisms are specified by which
the effects of competition are produced. Tilman (1987)
criticized this approach to competition and emphasized
that we need to study the mechanisms by which com-
petition occurs.

Tilman (1977, 1982) presented a mathematical
model of competition based on resource use. We
begin our examination of the essential features of
Tilman’s model by considering Figure 5, which illus-
trates the response of an organism to two essential re-
sources; for terrestrial plants these might be nitrogen
and light, for example, or for a freshwater fish these
might be zooplankton concentration and oxygen
level. If the level of abundance of either resource 1 or
resource 2 is too low, the population declines; con-
versely, if both resources are abundant, the popula-
tion increases. The boundary between population
growth and decline is the zero growth isocline of this
species. A second key parameter for Tilman’s model is
the rate of consumption of the two essential re-
sources. Each species will consume resources at differ-
ent rates. For example, a plant might utilize water
more rapidly than it utilizes nitrogen. These rates of

consumption will determine the slope of the con-
sumption vectors illustrated in Figure 5.

If we repeat this analysis for a second species, we
can superimpose the two zero growth isoclines.
Figure 6 shows the possible outcomes of competi-
tion for the two competing species. In the first case
(Figure 6a), species B needs more of both resources
than species A. Thus species A will win out in com-
petition, and species B will go extinct. The second
case (Figure 6b) is the mirror image of the first case,
and species A goes extinct. In the remaining case
(Figure 6c) the zero growth isoclines cross, so there
is an equilibrium point. To determine whether this
equilibrium is stable or unstable, we need additional
information on the consumption curves for each
species. At the equilibrium point in Figure 6c,
species A is limited by resource 2, and species B is
limited by resource 1. If species A consumes rela-
tively more of resource 1 than does species B, the
equilibrium point is unstable, and one species or the
other will go extinct. To apply Tilman’s model to a
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Figure 5 The response of a single species population to
variations in two essential resources (such as nitrogen
and water, for plants). The blue lines represent the zero
growth isoclines, the lower one set by resource 2 and the
left one set by resource 1 (red arrows). Above these
isoclines in the blue shaded area, the population can
increase in size; below these isoclines in the gray area, the
population will decline. In the left side of 
the gray area, resource 1 is limiting; in the bottom side 
of the gray area, resource 2 is limiting. Only at the
intersection point (blue dot) are both resources
simultaneously limiting. At the hypothetical consumption
vectors Ca the organism uses resource 1 more rapidly and
resource 2 more slowly; Cb represents the opposite case.
(Modified from Tilman 1982.)
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Species Interactions I: Competition

particular environment, we must know the rate of
supply of the limiting resources to the populations (a
function of the habitat) and the rates of consump-
tion of these resources by each species (represented
by the vectors in Figure 5).

Tilman’s model provides the same final predic-
tions as the Lotka-Volterra model (compare Figure 6
with Figure 4), but Tilman’s model can be extended to
make community-level predictions about species di-
versity and succession (Tilman 1986, 1990). The
strength of Tilman’s model is in its emphasis on mech-
anism, and because of this it can help us understand
more precisely how species interact over limited re-
sources.

Three important ideas have come from these math-
ematical models of two competing species:

1. Competition can lead to one species winning and
the second species going extinct.

2. Some competitive interactions can lead to
coexistence.

3. We can understand competitive interactions only
by knowing the resources involved and the
mechanisms by which species compete.

Now that we have these mathematical formulations
and some simple hypotheses of competitive interac-
tions, we must see if they are an adequate representa-
tion of what happens in actual biological systems.

Competition in Experimental
Laboratory Populations
One of the first and most important investigations of
competitive systems was conducted by a Russian micro-
biologist named Georgyi Frantsevich Gause working at
Moscow University. Gause (1932) studied in detail the
mechanism of competition between two species of
yeast, Saccharomyces cervisiae and Schizosaccharomyces
kephir.2 In the first aspect of his investigations, concern-
ing the growth of these two species in isolation, he
found that the population growth of both species of
yeast was sigmoid and could reasonably be fitted by the
logistic curve.

Gause then asked: What are the factors in the envi-
ronment that depress and stop the growth of the yeast
population? Richards (1928) had previously shown
that when the growth of yeast stops under anaerobic
conditions, a considerable amount of sugar and other
necessary growth substances remain in the cultures. Be-
cause growth ceases before the reserves of food and en-
ergy are exhausted, something else in the environment
must be responsible for the restriction of population
increase. The decisive factor seems to be the accumula-
tion of ethyl alcohol, which is produced by the break-
down of sugar for energy under anaerobic conditions
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Figure 6 Tilman’s model of competition for two essential resources. The zero
isoclines for species A (blue) and species B (red, dashed line) are shown, along with the
consumption rate vectors for each species (Ca and Cb). For all three cases the regions are
labeled and colored as follows: 1 (gray) � neither species can live; 2 (yellow) � only
species A can live; 3 (blue) � species A wins out in competition; 4 (white) � stable
coexistence; 5 (orange) � species B wins out in competition; 6 (green) � only species B
can live. • � stable equilibrium point. (From Tilman 1982.)

2These organisms’ scientific names have changed since Gause’s studies.
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Figure 8 Population growth of pure cultures of two
yeasts, Saccharomyces and Schizosaccharomyces. (After
Gause 1932.)
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accumulation (red) in a population of yeast
(Saccharomyces). (After Richards 1928.)
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Figure 9 Growth of populations of the yeast
Saccharomyces in pure cultures and in mixed cultures
with Schizosaccharomyces. (After Gause 1932.)

(Figure 7). High concentrations of alcohol kill the new
yeast buds just after they separate from the mother cell.
Richards showed that the yeast growth could be re-
duced by artificially adding alcohol to cultures, and
changes in the pH of the medium were of secondary
importance. Thus with yeast we apparently have a quite
simple relationship, with the population in test tube
cultures being limited principally by one factor: ethyl
alcohol concentration.

When grown separately, the two yeast species re-
acted as shown in Figure 8. From these curves, Gause
calculated logistic curves (calculated in units of vol-
ume):

Gause then investigated what would happen when the
two yeast species were grown together, and he obtained the
results shown in Figure 9 and Figure 10. Gause assumed
that these data fit the Lotka-Volterra equations, and using
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Figure 10 Growth of populations of the yeast
Schizosaccharomyces in pure cultures and in mixed
cultures with Saccharomyces. (After Gause 1932.)
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Alcohol production 
(% EtOH/mL yeast)

Saccharomyces 0.113

Schizosaccharomyces 0.247

the equations on the data from the mixed cultures, he ob-
tained the following data:

The influence of Schizosaccharomyces on Saccharomyces is
measured by α, and this means that, in terms of competi-
tion, Saccharomyces can fill its K1 spaces according to the
equivalence

1 volume of Schizosaccharomyces � 3.15 volumes of
Saccharomyces

Note that the α and β values tend to change with
the age of the culture, but as a first approximation we
can assume α and β to be constants.

If alcohol concentration is the critical limiting fac-
tor in these anaerobic yeast populations, Gause argued,
then we should be able to determine the competition
coefficients α and β by measuring the alcohol produc-
tion rate of the two yeasts. He found:

other, but this assumption need not apply to all cases of
competition.

In many laboratory experiments, a species can do well
when raised alone but can be driven to extinction when
raised in competition with another species. When Birch
(1953b) raised the grain beetles Calandra oryzae and
Rhizopertha dominica at several different temperatures, he
found that Calandra would invariably eliminate Rhizopertha
at 29°C (Figure 11) and that Rhizopertha would always
eliminate Calandra at 32°C (Figure 12). Birch found that
he could predict these results from the intrinsic capacity for
increase; for example,
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Figure 11 Population trends of adult grain beetles
(Calandra oryzae and Rhizopertha dominica) living
together in wheat of 14% moisture content at 29.1°C.
Calandra eliminates Rhizopertha in competition at this
temperature. (After Birch 1953b.)

r Temperature Winner

Calandra 0.77 29.1°C Calandra

Rhizopertha 0.58

Rhizopertha 0.69 32.3°C Rhizopertha

Calandra 0.50

Gause then argued that since alcohol was the limiting
factor of population growth, the competition coeffi-
cients, α and β, should be determined by a direct ratio
of these alcohol production figures:

These independent physiological measurements agree
in general with those obtained from the population
data given previously. Gause attributed the differences
in the α values to the presence of other waste products
affecting Saccharomyces. Gause assumed that the compe-
tition coefficients would be the reciprocals of each

 b �
0.113
0.247

� 0.46

 a �
0.247
0.113

� 2.18

Thus we could change the outcome of competition by
changing only one component of the environment,
temperature, by only 

In all the grain beetle experiments just discussed,
one species or the other died out completely. All these
situations fall under cases 1 or 2 in our treatment of the
Lotka-Volterra equations. What about case 3, in which
the species coexist? Yeasts coexisted in Gause’s experi-
ments; does coexistence ever occur in grain beetles?

Under the conditions of extreme crowding in labo-
ratory experiments, it is possible for two species to live
together indefinitely if they differ even slightly in their

3°C.

Competition coefficients

Age of Culture 
(hr)

α 
Saccharomyces

β
Schizosaccharomyces

20 4.79 0.501

30 2.81 0.349

40 1.85 0.467

Mean value 3.15 0.439
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requirements. For example, Crombie (1945) reared the
grain beetles Rhizopertha and Oryzaephilus in wheat and
found that they would coexist indefinitely. The larvae of
Rhizopertha live and feed inside the grain of wheat; the
larvae of Oryzaephilus live and feed outside the grain.
(The adults of both species have the same feeding behav-
ior, feeding outside the wheat grain.) Apparently these
larval differences were sufficient to allow coexistence.

Gause (1934) found that Paramecium aurelia and
P. bursaria would coexist in a tube containing yeast. 
P. aurelia would feed on the yeast suspension in the
upper layers of the fluid, whereas P. bursaria would feed
on the bottom layers. This difference in feeding behav-
ior allowed these species to coexist.

Thus by introducing only very slight differences in
the environment, or given very slight differences in
species habits, coexistence can occur between compet-
ing animal species under laboratory conditions.

Competition in Natural
Populations
We now come to the question of how these theoretical
and laboratory results apply to nature. In asking this
question, we come up against a controversy of modern
ecology, the problem of Gause’s hypothesis.

Gause (1934) wrote: “As a result of competition
two similar species scarcely ever occupy similar niches,
but displace each other in such a manner that each
takes possession of certain peculiar kinds of food and
modes of life in which it has an advantage over its com-
petitor” (p. 19). Gause referred to Elton (1927), who
had defined niche as follows: “The niche of an animal

means its place in the biotic environment, its relations
to food and enemies” (p. 64). Thus Elton used the term
niche to describe the role of an animal in its commu-
nity, so one could speak (for example) of a broad herbi-
vore niche, which could be further subdivided.

Gause went on to say that the Lotka-Volterra equa-
tions do “not permit any equilibrium between the com-
peting species occupying the same ‘niche,’ and [lead] to
the entire displacing of one of them by another. . . .
Both species survive indefinitely only when they occupy
different niches in the microcosm in which they have
an advantage over their competitors” (p. 48). Gause
identifies case 3 (stable coexistence) with the situation
of “different niches” and cases 1, 2, and 4 with the situ-
ation of “same niche.”

Gause himself never formally defined what is called
Gause’s hypothesis. In 1944 the British Ecological So-
ciety held a symposium on the ecology of closely re-
lated species. An anonymous reporter (who turned out
to be David Lack) wrote that year in the Journal of Ani-
mal Ecology that “the symposium centered about Gause’s
contention (1934) that two species with similar ecology
cannot live together in the same place . . .” (p. 176).

As is usual, several workers immediately searched out
and found earlier statements of “Gause’s hypothesis.”
Monard, a French freshwater biologist, had expressed the
same idea in 1920, and Grinnell, a California biologist,
had written much the same thing in 1904. Darwin appar-
ently had the same idea but never clearly expressed it. The
solution to this has been to drop the use of names and
call this idea the competitive exclusion principle, which
Hardin (1960) states succinctly: “Complete competitors
cannot coexist.” The competitive exclusion principle en-
capsulates the conclusions of the Lotka-Volterra models
for competition.

The concept of the niche is intimately involved with
the competitive exclusion principle, and so we must clar-
ify this concept first. The term niche was almost simulta-
neously defined to mean two different things. Joseph
Grinnell, who in 1917 was one of the first to use the
term niche, viewed it as a subdivision of the habitat:
Each niche was occupied by only one species. Elton in
1927 independently defined the niche as the “role” of a
species in the community. These vague concepts were in-
corporated into Hutchinson’s redefinition of the niche
in 1958. If we consider just two environmental vari-
ables, such as temperature and precipitation, and deter-
mine for each species the range of values that allow the
species to persist, we can produce an analysis like that in
Figure 13. This ecological space in which the species
can survive is defined as the realized niche of that
species. We could measure other environmental vari-
ables, such as pH or soil nutrients for plants, until all the
ecological factors relative to the species have been meas-
ured. In an ideal world we could measure the ecological
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Figure 12 Population trends of adult grain beetles
(Calandra oryzae and Rhizopertha dominica) living
together in wheat of 14% moisture content at 32.3�C.
Calandra goes extinct and Rhizopertha wins in competition
at this temperature. (After Birch 1953b.)
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270 INTERSPECIFIC COMPETITION AND AMENSALISM

slow the regeneration and growth of chamise by their utilization of
light, water and soil nutrients, but I suspect that the effects would
be relatively small and difficult to show.

17.3 The Lotka–Volterra model of interspecific
competition

In the mid-1920s, a simple mathematical model of interspecific com-
petition was independently derived by Alfred James Lotka, a physical
chemist in the United States who was interested in modelling biolog-
ical processes, and Vito Volterra, an Italian mathematician. Volterra
had been asked to model the process by his daughter, Luisa, an ecolo-
gist, and her fiancé, Umberto d’Ancona, who was a marine biologist.
The model is now called the Lotka--Volterra competition model. The
model is a simple extension of the logistic growth model (Chapter 5)
for a pair of species, which are designated as N1 and N2. When the
two species are growing independently, their population growth is
reduced by intraspecific competition as follows:

δN1

δt
= r1 N1

(
K 1 − N1

K 1

)
(Exp. 17.1)

δN2

δt
= r2 N2

(
K 2 − N2

K 2

)
(Exp. 17.2)

These equations are simple modifications of Eqn 5.2a. When the
two species grow together the growth rate of each species is further
reduced by the presence of the other, i.e. by interspecific competition.
Lotka and Volterra modified the above two expressions as follows:

δN1

δt
= r1 N1

(
K 1 − N1 − αN2

K 1

)
(Eqn 17.1)

δN2

δt
= r2 N2

(
K 2 − N2 − βN1

K 2

)
(Eqn 17.2)

We are familiar with most of the terms in this pair of equations.
The carrying capacities of the two species are denoted by K1 and K2,
the rates of population increases are denoted by r1 and r2, and the
densities of the two species are denoted by N1 and N2. The coeffi-
cients α and β (called competition coefficients) are new to us, and as
they are a key feature of the model we need to understand what they
represent. In simple terms, α is a coefficient to make the individuals
of species 2 equivalent to individuals of species 1, in terms of their
effect on the population growth of species 1. For example, if each in-
dividual of species 2 had the same effect as 2.5 individuals of species
1 on the growth of species 1, α would equal 2.5. Similar reasoning
shows that β is a coefficient to make the individuals of species 1
equivalent to individuals of species 2, in terms of their effect on the
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Fig. 17.2 Graphical
representation of the zero
isoclines of two species in the
Lotka-Volterra competition model.
The arrows show the direction of
population growth for each species
at various combination densities of
the two species.

population growth of species 2. We can express these relationships as
follows:

α = effect of one unit of sp. 2 on the growth of sp. 1

effect of one unit of sp. 1 on the growth of sp. 1
(Exp. 17.3)

β = effect of one unit of sp. 1 on the growth of sp. 2

effect of one unit of sp. 2 on the growth of sp. 2
(Exp. 17.4)

Normally the units are individuals, in which case the competition
coefficients are a measure of the relative importance per individual
of interspecific and intraspecific competition. However, in some cases
the species are measured by biomass or volume, and we would use
these measures to compare the effects of competition.

To determine the outcome of competition between the two species,
Eqns 17.1 and 17.2 must be solved simultaneously. We do this by de-
termining the equilibrium population densities when the two species
reach their combined saturation densities and there is no further
growth, i.e. when δN1/δt and δN2/δt = 0. This occurs when the nu-
merator of the terms in parentheses in Eqns 17.1 and 17.2 equal zero.

Thus, when δN1/δt = 0, K1 − N1 − αN2 = 0, and this may be
rearranged to show us that at equilibrium:

N1 = K 1 − αN2 (Eqn 17.3)

Similarly,

N2 = K 2 − βN1 (Eqn 17.4)

Equations 17.3 and 17.4 can be represented graphically (Fig. 17.2) as
zero isoclines,2 which represent the densities of the two species when
there is no further population growth. The graphs and equations
make intuitive sense. If species 2 is not present, species 1 will grow
to its carrying capacity, K1, but its equilibrium density is reduced
as species 2 (N2) increases in density. We can see from Eqn 17.3 that
N1 will decline to zero when αN2 = K1, and so this occurs when
N2= K1/α. Similar reasoning shows us that species 2 will grow to K2

in the absence of species 1 (i.e. N1 = 0), and will decline to zero when

2 A zero isocline represents a set of conditions where there is no growth, i.e. r= 0,
which in the case of interspecific competition occurs when a species is at its saturation
density.
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Table 17.1 Growth parameters for Saccharomyces cerevisiae and Schizosaccharomyces kephir when cultured under
aerobic and anaerobic conditions

Competition Relative alcohol
K r coefficient production

Aerobic conditions
Saccharomyces (sp. 1) 9.80 0.287 69 α = 1.25 1.25
Schizosaccharomyces (sp. 2) 6.9 0.189 39 β = 0.85 0.80

Anaerobic conditions
Saccharomyces (sp. 1) 6.25 0.215 29 α = 3.05 2.08
Schizosaccharomyces (sp. 2) 3.0 0.043 75 β = 0.40 0.48

Source: 1932 data from Gause (1934).

N1 = K2/β. In addition, each species can increase in density when
the combined densities of the two species occur to the left of its zero
isocline, but will decline in density when the combined densities of
the two species occur to the right of its zero isocline (Fig. 17.2).

17.3.1 Five cases of competition
The equilibrium densities have been determined separately for each
species, but the equilibrium density of species 1 depends on the equi-
librium density of species 2, and vice versa. To understand the com-
bined dynamics of the two species we combine the two graphs, and
discover that there are five possible combinations of the two isoclines,
which represent five possible outcomes of competition as predicted
by the Lotka--Volterra equations.

Cases 1 and 2: Competitive dominance, and elimination of
one species by another
The great Russian biologist Gause used the approach of Lotka and
Volterra to investigate competition between two species of yeasts, Sac-
charomyces cerevisiae and Schizosaccharomyces kephir (= S. pombe), in the
early 1930s. First, he grew the two species separately and fitted a lo-
gistic growth curve to estimate the r and K values for each species
(see Chapter 5). Then the two species were grown together, and he
estimated the competition coefficients, α and β, by the way in which
the growth curves were modified. He did this for cultures grown in
anaerobic and aerobic conditions and obtained the following results
given in Table 17.1.

If we use these data to predict the outcome of competition
(Fig. 17.3), under aerobic conditions the model predicts that Saccha-
romyces will eliminate Schizosaccharomyces, because it has the higher
growth characteristics (r and K values) and the competition coeffi-
cients of the two species are similar. Under anaerobic conditions,
however, it is predicted that Schizosaccharomyces will eliminate Saccha-
romyces, because its increased competitive ability (α is much greater
than β) more than compensates for its inferior growth characteristics
(r and K values). In each case, the zero isocline of one species lies to
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Fig. 17.3 The outcome of
competition between
Saccharomyces cerevisiae (solid line)
and Schizosaccharomyces kephir
(dotted line) grown under aerobic
and anaerobic conditions, as
predicted by the Lotka–Volterra
model. Arrows show the predicted
growth of the two species. (Data
from Gause 1934.)

the right of the other (Fig. 17.3) and so it can continue to increase
in density at the expense of the other species and should eventually
eliminate it. In fact, however, neither species was eliminated because
the two species went into a resting stage as they approached their
combined saturation densities.

Now my objective is not to show that the Lotka--Volterra model is
useless. I could have selected an example that supports the prediction
of the model. We can make, however, the following observations from
Gause’s work. First, if you tried to predict the outcome of competi-
tion from the data in Table 17.1, without drawing the zero isoclines,
I suspect that you would guess incorrectly. Most people expect Saccha-
romyces to win under both sets of conditions because it consistently
has the higher r and K values, although others expect Schizosaccha-
romyces to win because it always has the higher competition coeffi-
cient. The model predictions, therefore, are not always very obvious.
Second, a change in conditions can alter the outcome of competition,
and so one species may be a superior competitor to another under
some conditions but be an inferior competitor under other condi-
tions. Finally, Gause’s work on yeast is interesting because it is one of
the few cases where the process of competition has been quantified.
Gause grew his yeast with an excess of sugar, and so this should not
have been limiting to growth. However, growth was inhibited by the
increasing concentration of alcohol, and Gause showed that under
aerobic conditions both species were inhibited to the same degree
by alcohol. He calculated the relative production of alcohol per unit
volume of the two species and showed that they corresponded to the
competition coefficients of the two species when grown under aerobic
conditions (Table 17.1). Gause concluded that competition between
the two species grown in aerobic conditions is entirely regulated
by their relative alcohol production. The competitive interaction ap-
pears to be more complex under anaerobic conditions. Saccharomyces
appears to inhibit Schizosaccharomyces purely by the production of al-
cohol (the competition coefficient of 0.4 is approximately equal to its
relative alcohol production of 0.48 -- see Table 17.1), but Schizosaccha-
romyces produces 2.08 times as much alcohol per unit volume than
Saccharomyces but inhibits the growth of the latter species 3.05 times
as much. Gause postulated that other products, such as carbon diox-
ide, were also involved in the competitive process.
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Table 17.2 Percentage of cultures where Tribolium con-
fusum eliminated T. castaneum when cultured at different
temperatures and relative humidity

Relative humidity

Temperature 30% 70%

24 ◦C 100% 71%
29 ◦C 87% 14%
34 ◦C 90% 0%

Source: Data from Park (1962).
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Fig. 17.4 (a) The outcome of competition between Tribolium confusum (solid line) and
T. castaneum (dotted line) when grown at 24 ◦C and 70% relative humidity, as predicted
by the Lotka–Volterra model. Two growth trajectories are shown by arrows. (b) The
observed outcome of competition between the two species when started at different
densities. Starting densities of cultures won by T. confusum are indicated by circles, and
those won by T. castaneum are indicated by crosses. (Data from Park 1962.)

Case 3: Either species can eliminate the other when grown in
the same conditions
Competition between different species of flour beetles has been exten-
sively studied by Park, Mertz, Dawson, and others. They are ideal ex-
perimental animals, because they are small, about 4--5 mm in length
as adults, and can complete their entire life cycle in small containers
of flour. They can be counted by sieving the flour, and it is possible to
do well-replicated experiments by keeping several containers in con-
trolled environment chambers. In one such series of experiments,
Park (1962) studied the growth of single and mixed species popula-
tions of Tribolium confusum and T. castaneum at different temperatures
and humidity (Table 17.2). Tribolium confusum always eliminated T. cas-
taneum at 24 ◦C and 30% relative humidity (Case 1), whereas at 34 ◦C
and 70% relative humidity T. castaneum always eliminated T. confusum
(Case 2). However, at intermediate temperatures and humidity either
species can eliminate the other, although T. confusum wins more fre-
quently at lower humidity and temperatures and T. castaneum wins
more frequently at higher humidity and temperatures (Table 17.2).

If we consider the interaction at 24 ◦C and 70% relative humidity,
the carrying capacity of T. confusum (K1) was 220 and of T. castaneum
(K2) was 340, and the competition coefficients were α = 1 and β = 2.2,
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competition between Rhizopertha
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(dotted line), as predicted by the
Lotka–Volterra model. Arrows
show the predicted growth of the
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(Data from Crombie 1945.)

enabling us to draw the zero isoclines for this interaction (Fig. 17.4a).
It may be seen that the model predicts that either species can win
depending on their initial densities and relative rates of increase.

Park grew cultures starting with different combinations of den-
sities of the two species (Fig. 17.5) and showed that a species would
always eliminate the other if the starting densities were weighted
in its favour. However, there was a region of intermediate densities,
which he called an indeterminate zone, where it was not possible to
predict with certainty the winning species. In this region, stochastic
(chance) events probably determined which species increased faster
than the other, so that it would overwhelm and eventually eliminate
the other species.

The process of competition between these two species is complex.
There is the exploitation of the flour by the two species, but this is af-
fected by the production of growth inhibitors by each species, which is
difficult to quantify. There are also predation and cannibalism of eggs
and pupae by the larvae and adults. Each species prefers to eat the
eggs and pupae of the other species, and it is likely that this mutual
predation dominates the competitive interaction. Park considered
that this mutual predation was a type of interference competition.

The Lotka--Volterra model correctly predicts the outcome of com-
petition between these two species. Noting the conditions for Case 3
from the intercepts of the two isoclines (Fig. 17.6), we see that K1 >

K2/β and so β > K2/K1, and that K2 > K1/α and so α > K1/K2. Interspe-
cific competition is usually stronger than intraspecific competition in
Case 3.

Case 4: Coexistence of the two species at a stable
equilibrium density
Two species will coexist in stable equilibrium when each species in-
hibits its own growth more than it inhibits the growth of the other
species, i.e. intraspecific competition is stronger than interspecific
competition in both species. An example of this type of competition is
provided by the flour beetles Oryzaephilus and Rhizopertha, when they
are grown in cracked wheat (Crombie 1945).
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Fig. 17.6 Predicted outcome of
competition between Paramecium
aurelia and P. caudatum according
to the Lotka–Volterra model.
(Data from Gause 1934.)

In one set of experiments, the carrying capacities were 330 for
Rhizopertha (K1) and 440 for Oryzaephilus (K2), and the competition co-
efficients were α = 0.235 and β = 0.12. The predicted outcome of
competition between these two species is shown in Fig. 17.6, and this
reflects what is observed. Apparently, the larvae of Rhizopertha live,
feed and pupate inside the cracks in the grains of wheat, whereas
the larvae of Oryzaephilus live and feed on the surface of the grain.
The adults of both species live and feed on the surface of the grain.
The difference in feeding habits of the larvae, and probably a re-
duced level of predation by Oryzaephilus on the eggs and pupae of
Rhizopertha, allows the two species to coexist in stable equilibrium.
The importance of reducing pupal predation has been demonstrated
in competition between Tribolium confusum and Oryzaephilus. Tribolium
always eliminated Oryzaephilus in flour cultures, but when the flour
was ‘seeded’ with capillary tubes there was stable coexistence of the
two species. The smaller species, Oryzaephilus, could pupate in the
capillary tubes and so was protected from predation.

The conditions for Case 4 may be inferred from the intercepts
of the zero isoclines. We see that K1 < K2/β and so β < K2/K1, and
K2 < K1/α and so α < K1/K2. Normally, the effects of intraspecific
competition are greater than those of interspecific competition.

Case 5: Coexistence at a range of equilibrium densities
When α = K1/K2 and β = K2/K1 the zero isoclines of the two species
are coincidental (Fig. 17.6), and the model predicts that the two species
can coexist at a range of densities, depending on their initial densities
and relative growth rates. Many consider that this case is impossible,
but we will consider one example because it reveals a fundamental
flaw in the basic Lotka--Volterra model.

Gause (1934) examined competition between Paramecium aurelia
and P. caudatum which appears to conform to this situation (Table 17.3).
Although the Lotka--Volterra model predicts that the two species will
coexist, P. caudatum was eliminated from the mixed species cultures
by about day 16. The main reason for the displacement of P. caudatum
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Table 17.3 Growth parameters for Paramecium aurelia and P. caudatum cul-
tivated separately and together in buffered medium with a ‘half-loop’ con-
centration of bacteria

Parameter Paramecium aurelia Paramecium caudatum

Carrying capacity K1 = 105 K2 = 64
Intrinsic rate of

increase
r1 = 1.1244 r2 = 0.7944

Competition
coefficient

α = 1.64 β = 0.61

Source: Data from Gause (1934).

by P. aurelia is related to the daily sampling of the cultures to estimate
their densities. To quote from Gause (1934):

The biomass of every species was decreased by 1/10 daily. Were the
species similar in their properties, each one of them would again
increase by 1/10, and there would not be any alteration in the relative
quantities of the two species. However, as one species grows quicker
than another, it succeeds not only in regaining what it has lost but also
in seizing part of the food resources of the other species. Therefore,
every elementary movement of the population leads to a diminution in
the biomass of the slowly growing species, and produces its entire
disappearance after a certain time.

Gause’s observation makes a great deal of sense. Populations are
reduced by predation and various forms of disturbance, and their
ability to recover from these reductions undoubtedly influences the
outcome of competition between species. However, the Lotka--Volterra
model only uses the carrying capacities (K) and the competition coef-
ficients (α and β) to predict the outcome of competition, so it would
be useful to modify the model so that the growth rates (r) can also
influence the outcome.

17.3.2 Complicating the model: introducing
a removal factor

Slobodkin (1961) modified the basic Lotka--Volterra model by includ-
ing a non-selective removal factor (m), and showed that the relative
growth rates of the two species may be important in determining the
outcome of competition. He modified Eqns 17.1 and 17.2 by removing
a proportion (m) of each population at each time step, and obtained
following pair of equations:

δN1

δt
= r1 N1

(
K 1 − N1 − αN2

K 1

)
− mN1 (Eqn 17.5)

δN2

δt
= r2 N2

(
K 2 − N2 − βN1

K 2

)
− mN2 (Eqn 17.6)

If the removal factor is selective, such as a predator eating more
of one species than the other, we can still make it conform to our
model by making the appropriate reduction to the growth rate, r,
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