Section – A

1. The pair of metals that would react in their metallic form directly with carbon monoxide affording metal-carbonyl compounds is:

- (a) Co and Mn
- (b) Mn and Fe
- (c) Fe and Ni
- (d) Ni and Co
- 2. H₂O₂ functions as the oxidizing agent in acidic solution for
- (a) $[Fe(CN)_6]^{4-}$ and NH_2OH
- (b) $[Fe(CN)_6]^{3-}$ and NH_2OH
- (c) MnO_4^- and NH_4OH
- (d) MnO_4^- and NH_2OH

3. Out of the following complexes; Ni(H₂O)₆²⁺, Mn(H₂O)₆²⁺, Cr(H₂O)₆²⁺, and Ti(H₂O)₆³⁺; the ideal octahedral geometry is not observed in

- (a) $Ni(H_2O)_6^{2+}$ and $Mn(H_2O)_6^{2+}$
- (b) $Mn(H_2O)_6^{2+}$ and $Cr(H_2O)_6^{2+}$
- (c) Ni(H₂O) $_{6^{2+}}$, Cr(H₂O) $_{6^{2+}}$,
- (d) $Cr(H_2O)_6^{2+}$ and $Ti(H_2O)_6^{3+}$

4. The number of bridging and terminal carbonyls present in $Co_4(CO)_{12}$ at low temperature respectively are

- (a) 0 and 12
- (b) 3 and 9
- (c) 4 and 8
- (d) 6 and 6

5. The expected spin – only magnetic moments for $[Fe(CN)_6]^{4-}$ and $[FeF_6]^{3-}$ respectively are

(a) 1.73 and 1.73 B.M.

- (b) 1.73 and 5.92 B.M.
- (c) 0.0 and 1.73 B.M.
- (d) 0.0 and 5.92 B.M.

6. Arrange following compounds in order of increasing dipole moment: BF_3 , H_2S , and H_2O

- (a) $BF_3 < H_2S < H_2O$
- (b) $BF_{3} > H_{2}S > H_{2}O$
- (c) $BF_3 < H_2S > H_2O$
- (d) $BF_{3} > H_{2}S < H_{2}O$

7. The bond dissociation energies of four bonds, X - A, X - B, X - C, and X - D are 240, 280, 380, and 480 KJ mol⁻¹, respectively. The atom with smallest size is

- (a) A
- (b) B
- (c) C
- (d) D

8. Arrange the following metal – carbonyl complexes in the decreasing order of the carbonyl stretching frequency: $[Ni(CO)_4]$, $[Co(CO)_4]^-$, and $[Fe(CO)_4]^{2-}$.

(a) [Fe(CO)₄]²->[Co(CO)₄]⁻>[Ni(CO)₄]

- (b) [Co(CO)₄]⁻>[Ni(CO)₄] >[Fe(CO)₄]²⁻
- (c) $[Fe(CO)_4]^{2-}= [Co(CO)_4]^{-}>[Ni(CO)_4]$
- (d) $[Ni(CO)_4] > [Co(CO)_4]^- > [Fe(CO)_4]^{2-}$

- 9. The correct increasing order of O N O bond angle is
- (a) $NO_2^+ < NO_2 < NO_2^-$
- (b) NO₂ < NO₂ < NO₂ +
- (c) NO₂ < NO₂⁺ < NO₂⁻
- (d) $NO_2^- < NO_2 < NO_2^+$

10. The correct sequence for the bond order of O_2 , O_2^+ , O_2^- , and O_2^{2-} is

- (a) $O_2 > O_2^+ > O_2^- > O_2^{2-}$
- (b) $O_2^+ > O_2 > O_2^- > O_2^{2-}$
- (c) $O_2 > O_2^+ > O_2^{2-} > O_2^{-}$
- (d) $O_2^{2-} > O_2^{-} > O_2^{+} > O_2$
- 11. Alkali metal superoxides are obtained by the reaction of
- (a) oxygen with alkali metals in liquid ammonia
- (b) water with alkali metals in liquid ammonia
- (c) H₂O₂ with alkali metals in liquid ammonia
- (d) H₂O₂ with alkali metals in water

12. For the reaction *trans*-[IrCl(CO)(PPh₃)₂] + Cl₂ \rightarrow *trans*-[IrCl₃(CO)(PPh₃)₂], the correct observation is

- (a) v_{CO} (product) > v_{CO} (reactant)
- (b) v_{CO} (product) < v_{CO} (reactant)
- (c) v_{CO} (product) = v_{CO} (reactant)
- (d) v_{CO} (product) > v_{CO} (free CO)

13. The iridium complex that exhibits a triplet as well as a doublet in its ³¹P NMR spectrum is

- (a) trans-[IrCl(CO)(PPh₃)₂]
- (b) mer-[IrCl₃(PPh₃)₃]
- (c) fac-[IrCl₃(PPh₃)₃]
- (d) [lr(PPh₃)₄]⁺

14. Which of the following does not contain a C_3 axis ?

- (a) POCl₃
- (b) CIF₃
- (c) [H₃O]⁺
- (d) [NH₄]⁺

15. Which of the following statement is true about the change in symmetry on going from BF_3 to $[BF_4]^-$?

- (a) The point group changes from D_{3h} to T_{d}
- (b) The point group changes from $D_{3\nu}$ to T_d
- (c) The point group changes from D_{3h} to D_{4h}
- (d) The point group changes from $D_{3\nu}$ to $C_{3\nu}$

16. In a solid 'AB' having the NaCl structure, atoms 'A' occupy the corners of the cubic unit cell. If all the face-centered atoms along one of the axes are removed then the resultant stoichiometry of the solid will be

- (a) AB₂
- (b) A₂B
- (c) A₃B₄
- (d) A₄B₃

17. How many equivalents of nitric acid are needed to neutralize 45.0 ml of a 5.0 M solution of barium hydroxide?

- (a) 0.225 equivalents
- (b) 0.900 equivalents
- (c) 0.113 equivalents
- (d) 0.450 equivalents

18. A white crystalline substance dissolves in water. On passing H_2S gas to this solution, a black precipitate is obtained. The black precipitate dissolves completely in hot HNO₃. On adding a few drops of conc. H_2SO_4 , a white precipitate is obtained. The white precipitate is

- (a) BaSO₄
- (b) SrSO₄
- (c) PbSO₄
- (d) CdSO₄

19. An element has successive ionization energies of 900, 1800, 14800 and 21000 kJmol⁻¹.To which Group of the Periodic Table does the element belong?

- (a) I
- (b) II
- (c) III
- (d) IV

20. lodine exists in different oxidation states from –1 to +7. Which one of the following iodine containing ions could **not** undergo disproportionation?

- (a) I+
- (b) I⁻
- (c) IO⁻
- (d) IO³⁻

21. The pair of gaseous molecules/ions having tetrahedral structure is

- (a) SnCl₄ and PH₄⁺
- (b) SeCl₄ and XeF₄
- (c) ICI_4^- and PH_4^+
- (d) SnCl₄ and ICl₄⁻

22. Which one of the following pairs of electronic configurations of high-spin 3d transition metal ions in an octahedral ligand field undergoes a substantial Jahn-Teller distortion ?

- (a) d³ and d⁹
- (b) d^4 and d^9
- (c) d^5 and d^9
- (d) d^6 and d^9

23. Which one of the following pairs consists of a good oxidizing and a good reducing agent respectively ?

- (a) Ce(IV) and Ln(III)
- (b) Ln(III) and Eu(II)
- (c) Ce(IV) and Eu(II)
- (d) Ln(III) and Ce(III)

24. The correct sequence of steps in the olefin hydrogenation reaction using Wilkinson's catalyst, [Rh(PPh₃)₃Cl], is

- (a) olefin addition followed by oxidative addition of H_2
- (b) olefin addition followed by reductive elimination of phosphine
- (c) phosphine dissociation followed by oxidative addition of H_2
- (d) oxidative addition of H_2 followed by phosphine dissociation

25. Considering the two complexes, $[Ni(H_2O)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$, the correct statement is

?

(a) $[Ni(H_2O)_6]^{2+}$ is diamagnetic but $[Ni(NH_3)_6]^{2+}$ is paramagnetic

(b) $[Ni(H_2O)_6]^{2+}$ is paramagnetic but $[Ni(NH_3)_6]^{2+}$ is diamagnetic

(c) Both $[Ni(H_2O)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$ are diamagnetic

(d) $[Ni(H_2O)_6]^{2+}$ and $[Ni(NH_3)_6]^{2+}$ are paramagnetic

26. The major product formed in the following reaction is

27. Assign the absolute configuration at the two chiral centres of the following compound.

$$4$$

(a) 1R, 4R
(b) 1R, 4S
(c) 1S, 4R
(d) 1S, 4S

- 28. In the IR spectrum of neat methyl salicylate , the O-H band appears at
- (a) 3200 cm⁻¹
- (b) 3250 cm⁻¹
- (c) 3350 cm⁻¹
- (d) 3400 cm⁻¹
- 29. The following structure of Lupeol contains isoprene unit which are

31. The mechanism involved in the following conversion is

(d) Syn elimination

33. In the Infra Red spectrum of p-nitrophenyl acetate, the carbonyl absorption band appears at

- (a) 1670 cm⁻¹
- (b) 1700 cm⁻¹
- (c) 1730 cm⁻¹
- (d) 1760 cm⁻¹
- 34. Histidine amino acid contains
- (a) Tetrahydropyrrole
- (b) Pyridine
- (c) Indole
- (d) Imidazole

36. The reactive intermediate involved in the following reaction is

- (a) a carbanion
- (b) a carbocation
- (c) a free radical
- (d) an aryne

37. Identify the major product formed in the following reaction.

- 38. The gauche (θ = 60⁰) conformation of n-butane shows
 - (a) plane of symmetry and is achiral
 - (b) plane of symmetry and is chiral
 - (c) C₂ axis of symmetry and is chiral
 - (d) centre of symmetry and is achiral
- 39. The composition of Lindlar's catalyst is
 - (a) Pd, CaCO₃, Pb(OAc)₂
 - (b) Pd, Na₂CO₃, Pb(OAc)2
 - (c) Pt, CaCO₃, Pb(OAc)₂
 - (d) Pt, CaCO₃, Pb(OAc)₂

40. Identify the major product formed in the following reaction

41. Arrange the following in the decreasing order of acidity.

42. Natural ribonucleic acid (RNA) is a genetic material in all living organism. It contains

- (a) adenine, guanine, cytosine, thymine
- (b) adenine, guanine, inosine, thymine
- (c) adenine, guanine, thymine, uracil
- (d) adenine, guanine, 5-iodouracil, thymine
- 43. Circular dichroism of α -helix peptide or α -helical protein shows band at
- (a) 208 and 222 nm
- (b) 222 nm
- (c) 214 and 216 nm
- (d) 205 and 230 nm
- 44. The IUPAC name for the given compound is

- (a) (2R, 3Z) -7-phenylhept-3-en-2-ol
- (b) (2S, 3Z) -7-phenylhept-3-en-2-ol
- (c) (2R, 3E) -7-phenylhept-3-en-2-ol
- (d) (2S, 3E) -7-phenylhept-3-en-2-ol

45. The following reaction is

- (a) Aromatic ipso substitution reaction
- (b) Aromatic electrophilic substitution reaction
- (c) Aromatic nucleophilic substitution reaction
- (d) Aromatic free radical substitution reaction
- 46. The correct order of acidity of the compounds A-C is

- (a) A>B>C
- (b) B>C>A
- (c) C>A>B
- (d) B>A>C

47. Match the following drugs with their medicinal activity

- A. AZT i) Cancer
- B. Taxol ii) Malaria
- C. Artemisnin iii) HIV
- (a) A-iii, B-ii, C-i
- (b) A-iii, B-i, C-ii
- (c) A-ii, B-i, C-iii
- (d) A-ii, B-iii, C-i

48. The paracetamol shows carbonyl peak at

- (a) 1700 cm⁻¹
- (b) 1720 cm⁻¹
- (c) 1710 cm⁻¹
- (d) 1667 cm⁻¹
- 49. Name the scientists who discovered double helix DNA
- (a) James Watson & F Miescher
- (b) Francis Crick & H G Khurana
- (c) H G Khurana & Erwin Chargaff
- (d) James Watson & Francis Crick

51. Which of the following is true:

(a) $[L_x, L_y] = 0$ (b) $[L_x, L_y] = i\hbar L_y$ (c) $[L_x, L_y] = i\hbar L_z$ (d) $[L_x, L_y] = i\hbar L_y$

52. The Michaelis-Menten equation for Enzyme Kinetics is a non-linear relationship between the substrate concentration (**[S]**) and the rate of the reaction (**V**) which can be written as:

53. Which of the following is true:

- (a) $(\partial U / \partial S)_V = T$ (b) $(\partial U / \partial V)_S = p$ (c) $(\partial H / \partial S)_p = V$
- (d) $(\partial H \partial V)_V = T$

54. A protein containing a single tryptophan residue, buried in a hydrophobic pocket displays

- (a) Strong fluorescence with high quantum yield.
- (b) Weak fluorescence with low quantum yield
- (C) Moderate fluorescence
- (d) No fluorescence at all

55. Which of the following ∇^2 is used in the representation of Schroedinger equation in spherical co-ordinates:

(a)
$$\nabla^2 = (\partial^2 / \partial x^2) + (\partial^2 / \partial y^2) + (\partial^2 / \partial z^2)$$

(b) $\nabla^2 = (\partial^2 / \partial r^2) + (2/r) (\partial / \partial r)$
(c) $\nabla^2 = (\partial^2 / \partial r^2) + (2/r) (\partial / \partial r) + (1/r^2) \{(1/\sin^2\theta) (\partial^2 / \partial \phi^2) + (1/\sin\theta) (\partial / \partial \theta)(\sin\theta (\partial / \partial \theta)) = (1/r) (\partial / \partial r) + (1/r^2) (\partial^2 / \partial \phi^2) + (\partial^2 / \partial z^2) \}$

56. When a protein, with 8 Cys residues, is totally denatured in 6.0 M urea and β mercaptoethanol and then again re-natured by dialyzing the β -mercaptoethanol out in the presence of 6.0 M urea, the predicted percentage of the activity of the re-natured protein in comparison to the native fully active protein will be approximately:

- (a) 1%
 (b) 0.01%
 (c) 100%
 (d) 0.4%
- (d) 0.1%

57. The bond length of a homo-nuclear di-atomic molecule can be obtained by:

- (a) Vibrational Raman Spectroscopy.
- (b) Rotational Raman Spectroscopy.
- (c) Microwave Spectroscopy.
- (d) Vibrational Spectroscopy.

58. Which of the following is true:

- (a) $[x, p_x] = 0$ and [E, t] = 0(b) $[x, p_x] \neq 0$ and $[E, t] \neq 0$
- (c) $[x, p_x] = 0$ and $[E, t] \neq 0$
- (d) $[x, p_x] \neq 0$ and [E, t] = 0

59. The Bragg's equation for crystallography can be written as:

(a) $n\lambda = (2 d \sin \theta)$ (b) $n\lambda = (2/d) \sin \theta$ (c) $n\lambda = (2 d / \sin \theta)$ (d) $n\lambda = 1/(2 d \sin \theta)$

60. In the case of a spectrum of a single molecule, line broadening is due to:

- (a) Doppler Effect.
- (b) Collisional Effects.
- (c) Uncertainty Effects.
- (d) None of the above.

61. The activation energy (E_a) of a chemical reaction can be determined by plotting:

- (a) Logarithm of rate constant versus absolute temperature.
- (b) Logarithm of rate constant versus logarithm of absolute temperature.
- (c) Rate constant versus reciprocal of absolute temperature.
- (d) Logarithm of rate constant versus reciprocal of absolute temperature.
- 62. In an NMR experiment, the longitudinal relaxation time (T_1) is given by:
 - (a) $M_z(t) M_0 \propto \exp(t/T_1)$
 - (b) $M_z(t) M_0 \propto exp(t/T_1)$
 - (c) $M_0 M_z(t) \propto exp(t/T_1)$
 - (d) $M_z(t) M_0 \propto -(t/T_1)$

63. Which of the following is the correct normalization co-efficient of the wave function

 $\psi = A \operatorname{Sin} (n\pi x/L)$

for a particle in a one-dimensional box of length *L*.

64. The Henderson-Hasselbalch equation is defined as:

(a) $pH = pK_a + log [acid] / [salt]$ (b) $pK_a = pH + log [salt] / [acid]$ (c) $pK_a = pH + log [acid] / [salt]$ (d) $pH = pK_a + log [salt] / [acid]$

65. In a reverse microemulsion, w_0 is defined as:

- (a) $\boldsymbol{w}_0 = [\text{surfactant}]/[\text{water}]$
- (b) $\boldsymbol{w}_0 = [water]/[surfactant]$
- (c) $w_0 = 1/[water]$
- (d) $\boldsymbol{w}_0 = 1/[\text{surfactant}]$

66. In the case of a particle in a one-dimensional box, the energy of an energy state is given by:

(a) $E_n = n^2 h^2 / 8ma^2$ where n = 1, 2, 3,

- (b) $E_n = n^2 h^2 (8ma^2)$ where n = 1, 2, 3,
- (c) $E_n = n^2 h^2 a^2 / 8m$ where n = 1, 2, 3,
- (d) $E_n = 8mn^2h^2/a^2$ where n = 1, 2, 3,

67. As the temperature of a solution is increased, the conduction in an electrolytic solution will:

- (a) Become zero.
- (b) Remain the same.

(c) Increase.

(d) Decrease.

68. The general solution for the differential equation

$$(d^2y/dx^2) + 16 y = 0$$

is given by:

(a) $Ae^{-4x} + Be^{4x}$ (b) $Ae^{-4ix} + Be^{4ix}$ (c) $Ae^{-2ix} + Be^{2ix}$ (d) $Ae^{-2x} + Be^{2x}$

69. The Lambert-Beer Law is valid for:

- (a) Colloidal solution.
- (b) Concentrated inhomogeneous solution.
- (c) Dilute homogeneous solution.
- (d) None of the above.

70. A calomel electrode is reversible with respect to:

- (a) AgCl
- (b) Cl⁻ ions
- (c) Ag⁺ ions
- (d) None of the above.

71. In a second order chemical reaction, the rate law can be determined from the linearity of:

(a) Log *c* versus *t*(b) 1/*c* versus *t*(c) Log *c* versus 1/*t*

(d) 1/*c* versus 1/*t*

72. The Born-Oppenheimer approximation states that:

- (a) The atoms in a molecule are regarded as fixed.
- (b) The nuclei of atoms in a molecule are regarded as fixed.
- (c) The electrons of atoms in a molecule are regarded as fixed.
- (d) The nuclei and electrons in a molecule are regarded as fixed.

73. The molecule ethene belongs to the symmetry group:

- (a) **D**_{2h}
- (b) **D**_{3h}
- (C) \boldsymbol{D}_{3d}
- (d) **D**_{2d}

74. Which of the following is the correct partition for indistinguishable and distinguishable partition function independent molecules:

(a) *q^N*/ *N* ! and *q^N*/ *N* !
(b) *q^N* and *q^N*(c) *q^N* and *q^N*/ *N* !
(d) *q^N*/ *N* ! and *q^N*

75. The Term symbol for a Na atom in its ground state is:

(a) ²P_{3/2} (b) ²P_{1/2} (c) ²S_{1/2} (d) ²D_{3/2}

	Answer Key:			
Q1. (c)	Q16. (c)	Q31. (c)	Q46. (c)	Q61. (d)
Q2. (a)	Q17. (d)	Q32. (a)	Q47. (b)	Q62. (a)
Q3. (d)	Q18. (c)	Q33. (d)	Q48. (d)	Q63. (d)
Q4. (b)	Q19. (b)	Q34. (d)	Q49. (d)	Q64. (*)
Q5. (d)	Q20. (b)	Q35. (a)	Q50. (a)	Q65. (b)
Q6. (a)	Q21. (a)	Q36. (b)	Q51. (c)	Q66. (a)
Q7. (d)	Q22. (b)	Q37. (a)	Q52. (a)	Q67. (c)
Q8. (d)	Q23. (c)	Q38. (c)	Q53. (a)	Q68. (b)
Q9. (d)	Q24. (c)	Q39. (a)	Q54. (a)	Q69. (c)
Q10. (b)	Q25. (d)	Q40. (a)	Q55. (c)	Q70. (b)
Q11. (a)	Q26. (a)	Q41. (b)	Q56. (a)	Q71. (b)
Q12. (b)	Q27. (d)	Q42. (*)	Q57. (b)	Q72. (b)
Q13. (b)	Q28. (a)	Q43. (a)	Q58. (b)	Q73. (a)
Q14. (b)	Q29. (c)	Q44. (d)	Q59. (a)	Q74. (d)
Q15. (a)	Q30. (c)	Q45. (*)	Q60. (c)	Q75. (c)

Note: (*) There is a mistake in the options on question number 42, 45, and 64 and everybody has been given two marks for that question.