
Data Types

Numeric Data Types Nonnumeric Data Types

1. Numeric Data Types

Numeric data types are types of data that consist of numbers, which can be computed

mathematically with various standard operators such as add, minus, multiply, divide and

more. Examples of numeric data types are examination marks, height, weight, the

number of students in a class, share values, price of goods, monthly bills, fees and

others. In Visual Basic, numeric data are divided into 7 types, depending on the range of

values they can store.

Numeric Data Types

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes
-3.402823E+38 to -1.401298E-45 for negative values
1.401298E-45 to 3.402823E+38 for positive values.

Double 8 bytes

-1.79769313486232e+308 to -4.94065645841247E-324 for

negative values
4.94065645841247E-324 to 1.79769313486232e+308 for
positive values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Decimal 12 bytes
+/- 79,228,162,514,264,337,593,543,950,335 if no decimal is
use
+/- 7.9228162514264337593543950335 (28 decimal places).

 2. Non-numeric Data Types

Nonnumeric data types are data that cannot be manipulated mathematically using
standard arithmetic operators. The non-numeric data comprises text or string data

types, the Date data types, the Boolean data types that store only two values (true or
false), Object data type and Variant data type .They are summarized in Table 5.2

 Nonnumeric Data Types

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters

String(variable length)
Length + 10
bytes

0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text)
Length+22
bytes

Same as variable-length string

Variables

In term of VB, variables are areas allocated by the computer memory to hold data. To

name a variable in Visual Basic, you have to follow a set of rules.

5.2.1 Variable Names

The following are the rules when naming the variables in Visual Basic

 It must be less than 255 characters

 No spacing is allowed

 It must not begin with a number

 Period is not permitted

Examples of valid and invalid variable names are displayed in Table 5.4

 Table 5.4

Valid Name Invalid Name

My_Car My.Car

ThisYear 1NewBoy

Long_Name_Can_beUSE
He&HisFather
*& is not acceptable

5.2.2 Declaring Variables

In Visual Basic, to declare the variables before using them by assigning names and data

types. They are normally declared in the general section of the codes' windows using the

Dim statement.

The format is as follows:

Dim Variable Name As Data Type

Example 5.1

Dim password As String

Dim yourName As String

Dim firstnum As Integer

Dim secondnum As Integer

Dim total As Integer

Dim doDate As Date

You may also combine them in one line , separating each variable with a comma, as

follows:

Dim password As String, yourName As String, firstnum As Integer,.............

If data type is not specified, VB will automatically declare the variable as a Variant.

For string declaration, there are two possible formats, one for the variable-length

string and another for the fixed-length string. For the variable-length string, just use the

same format as example 5.1 above. However, for the fixed-length string, you have to

use the format as shown below:

Dim VariableName as String * n, where n defines the number of characters the string

can hold.

Example 5.2:

Dim yourName as String * 10

yourName can holds no more than 10 Characters.

5.3 Constants

Constants are different from variables in the sense that their values do not change

during the running of the program.

5.3.1 Declaring a Constant

The format to declare a constant is

Const Constant Name As Data Type = Value

Example 5.3

Const Pi As Single=3.142

Const Temp As Single=37

Const Score As Single=100

6.1 Assigning Values to Variables

After declaring various variables using the Dim statements, we can assign values to

those variables. The general format of an assignment is

Variable=Expression

The variable can be a declared variable or a control property value. The expression could

be a mathematical expression, a number, a string, a Boolean value (true or false) and

more. The following are some examples:

firstNumber=100
secondNumber=firstNumber-99
userName="John Lyan"
userpass.Text = password
Label1.Visible = True
Command1.Visible = false

Label4.Caption = textbox1.Text
ThirdNumber = Val(usernum1.Text)
total = firstNumber + secondNumber+ThirdNumber

6.2 Operators in Visual Basic

To compute inputs from users and to generate results, we need to use various

mathematical operators. In Visual Basic, except for + and -, the symbols for the

operators are different from normal mathematical operators, as shown in Table 6.1.

Table 6.1: Arithmetic Operators

Operator
Mathematical

function
Example

^ Exponential 2^4=16

* Multiplication 4*3=12, (5*6))2=60

/ Division 12/4=3

Mod

Modulus(return

the remainder

from an integer

division)

15 Mod 4=3 255 mod

10=5

\

Integer

Division(discards

the decimal

places)

19\4=4

+ or &
String

concatenation

"Visual"&"Basic"="Visual

Basic"

Example

Dim firstName As String

Dim secondName As String

Dim yourName As String

 Private Sub Command1_Click()

firstName = Text1.Text

secondName = Text2.Text

yourName = secondName

+ " " + firstName

 Label1.Caption =

yourName

End Sub

In this example, three variables

are declared as string. For

variables firstName and

secondName will receive their data

from the user’s input into textbox1

and textbox2, and the variable

yourName will be assigned the

data by combining the first two

variables. Finally, yourName is

displayed on Label1.

Example

Dim number1, number2, number3 as Integer

Dim total, average as variant

Private sub Form_Click

number1=val(Text1.Text)

number2=val(Text2.Text)

number3= val(Text3.Text)

Total=number1+number2+number3

Average=Total/5

Label1.Caption=Total

Label2.Caption=Average

End Sub

In the example above, three variables are declared as

integer and two variables are declared as variant.

Variant means the variable can hold any data type.

The program computes the total and average of the

three numbers that are entered into three text boxes.

7.1 Conditional Operators

To control the VB program flow, we can use various conditional operators. Basically, they

resemble mathematical operators. Conditional operators are very powerful tools, they
let the VB program compare data values and then decide what action to take, whether to
execute a program or terminate the program and more. These operators are shown in
Table 7.1.

7.2 Logical Operators

In addition to conditional operators, there are a few logical operators which offer added

power to the VB programs. There are shown in Table 7.2.

Table 7.1: Conditional Operators

Operator
Meaning

=
Equal to

>
More than

<
Less Than

>=
More than and equal

<=
Less than and equal

<>
Not Equal to

Table 7.2:Logical Operators

Operator Meaning

And Both sides must be true

or
One side or other must
be true

Xor
One side or other must
be true but not both

Not Negates truth

* You can also compare strings with the above operators. However, there are certain
rules to follows: Upper case letters are less than lowercase letters,
"A"<"B"<"C"<"D".......<"Z" and number are less than letters.

7.3 Using If.....Then.....Else Statements with Operators

To effectively control the VB program flow, we shall use If...Then...Else statement together
with the conditional operators and logical operators.
The general format for the if...then...else statement is

If conditions Then

VB expressions

Else

VB expressions

End If

* any If..Then..Else statement must end with End If. Sometime it is not necessary to use Else.

Example:

 Private Sub OK_Click()

 firstnum=Val(usernum1.Text)

 secondnum=Val(usernum2.Text)

 If total=firstnum+secondnum And Val(sum.Text)<>0 Then

 correct.Visible = True
 wrong.Visible = False
 Else

 correct.Visible = False
 wrong.Visible = True
 End If

 End Sub

Lesson 8 : Select Case....End select Control Structure

Select Case is preferred when there exist many different conditions because using
If...Then..ElseIf statements might become too messy.
The format of the Select Case control structure is show below:

Select Case expression

 Case value1
 Block of one or more VB statements
 Case value2
 Block of one or more VB Statements
 Case value3
 .
 .
 Case Else
 Block of one or more VB Statements

End Select

Example 8.1

Dim grade As String

Private Sub Compute_Click()

grade=txtgrade.Text

Select Case grade

 Case "A"

 result.Caption="High Distinction"

 Case "A-"
 result.Caption="Distinction"

 Case "B"

 result.Caption="Credit"

 Case "C"
 result.Caption="Pass"

 Case Else
 result.Caption="Fail"

 End Select

End Sub

 Example 8.2

Dim mark As Single

Private Sub Compute_Click()
'Examination Marks

 mark = mrk.Text

Select Case mark
 Case Is >= 85

 comment.Caption = "Excellence"
Case Is >= 70

 comment.Caption = "Good"

Case Is >= 60
 comment.Caption = "Above Average"

Case Is >= 50
comment.Caption = "Average"

Case Else
comment.Caption = "Need to work harder"

End Select

End Sub

Example 8.3

Example 8.2 could be rewritten as follows:

Dim mark As Single

Private Sub Compute_Click()

'Examination Marks
 mark = mrk.Text

Select Case mark
 Case 0 to 49

 comment.Caption = "Need to work harder"

Case 50 to 59

 comment.Caption = "Average"

Case 60 to 69
 comment.Caption = "Above Average"

Case 70 to 84
comment.Caption = "Good"

Case Else
comment.Caption = "Excellence"

End Select

End Sub

Lesson 9: Looping

Visual Basic allows a procedure to be repeated many times as long as the processor until
a condition or a set of conditions is fulfilled. This is generally called looping . Looping is a
very useful feature of Visual Basic because it makes repetitive works easier. There are two kinds of
loops in Visual Basic, the Do...Loop and the For.......Next loop

9.1 Do Loop

The formats are

a) Do While condition
 Block of one or more VB statements
 Loop

b) Do
 Block of one or more VB statements
 Loop While condition

c) Do Until condition
 Block of one or more VB statements
 Loop

d) Do
 Block of one or more VB statements
 Loop Until condition

9.2 Exiting the Loop

Sometime we need exit to exit a loop prematurely because of a certain condition is
fulfilled. The syntax to use is known as Exit Do. You can examine Example 9.2 for its
usage.

9.3 For....Next Loop

The format is:

For counter=startNumber to endNumber (Step increment)
 One or more VB statements
Next

Please refer to example 9.3a,9.3b and 9.3 c for its usage.

Sometimes the user might want to get out from the loop before the whole repetitive
process is executed, the command to use is Exit For. To exit a For….Next Loop, you can
place the Exit For statement within the loop; and it is normally used together with the

If…..Then… statement. Let’s examine example 9.3 d.

 Example 9.1

 Do while counter <=1000
 num.Text=counter
 counter =counter+1
 Loop
* The above example will keep on adding until counter >1000.
The above example can be rewritten as
 Do
 num.Text=counter

 counter=counter+1
 Loop until counter>1000

Example 9.2

Dim sum, n As Integer
 Private Sub Form_Activate()
List1.AddItem "n" & vbTab & "sum"
Do
 n = n + 1
 Sum = Sum + n

 List1.AddItem n & vbTab & Sum
 If n = 100 Then
 Exit Do
 End If
 Loop

End Sub

Explanation

In the above example, we compute the summation of 1+2+3+4+……+100. In
the design stage, you need to insert a ListBox into the form for displaying the
output, named List1. The program uses the AddItem method to populate the
ListBox. The statement List1.AddItem "n" & vbTab & "sum" will display the
headings in the ListBox, where it uses the vbTab function to create a space

between the headings n and sum.

Example 9.3 a

For counter=1 to 10
display.Text=counter
 Next

Example 9.3 b

For counter=1 to 1000 step 10
counter=counter+1
 Next

Example 9.3 c
 For counter=1000 to 5 step -5
 counter=counter-10
 Next
*Notice that increment can be negative

Example 9.3 d

Private Sub Form_Activate()
For n=1 to 10
If n>6 then
Exit For
End If

Else
Print n
End If

End Sub

	6.1 Assigning Values to Variables
	6.2 Operators in Visual Basic
	7.1 Conditional Operators
	7.2 Logical Operators
	Lesson 8 : Select Case....End select Control Structure
	Lesson 9: Looping
	9.1 Do Loop
	9.3 For....Next Loop

