
EXPONENTIAL SMOOTHING 

 

Exponential smoothing is the most widely used class of procedures for 

smoothing discrete time series in order to forecast the immediate future. The 

idea of exponential smoothing is to smooth the original series the way the 

moving average does and to use the smoothed series in forecasting future 

values of the variable of interest. In exponential smoothing, however, we want 

to allow the more recent values of the series to have greater influence on the 

forecast of future values than the more distant observations. 

 

Exponential smoothing is a simple and pragmatic approach to forecasting, 

whereby the forecast is constructed from an exponentially weighted average 

of past observations. The largest weight is given to the present observation, less 

weight to the immediately preceding observation, even less weight to the 

observation before that, and so on (exponential decay of influence of past data) 

 

SIMPLE EXPONENTIAL SMOOTHING 

This forecasting method is most widely used of all forecasting techniques. It 

requires little computation. This method is used when data pattern is 

approximately horizontal (i.e., there is no neither cyclic variation nor 

pronounced trend in the historical data). 

Let an observed time series be y1, y2, …. yn. Formally, the simple exponential 

smoothing equation takes the form of 

St+1 = αyt + (1-α) St 

 

Where Si  The smoothed value of time series at time i 

            yi  Actual value of time series at time i 

             α Smoothing constant  



In case of simple exponential smoothing, the smoothed statistic is the  

Forecasted value. 

            Ft+1 = αyt + (1-α) Ft 

Where Ft+1  Forecasted value of time series at time t+1 

              Ft  Forecasted value of time series at time t 

This means: 

      Ft = αyt-1 + (1-α) Ft-1 

Ft-1 = αyt-1 + (1-α) Ft-2 

Ft-2 = αyt-2 + (1-α) Ft-3  

Ft-3 = αyt-3 + (1-α) Ft-4 

 

Substituting, Ft+1 = αyt + (1-α) Ft = αyt + (1-α)(αyt-1 + (1-α)Ft-1) = 

  = αyt + α (1-α) yt-1 + (1-α)2 Ft-1 =  

  = αyt + α (1-α) yt-1 + α (1-α)2 yt-2 + (1-α)3Ft-2 

  = αyt + α (1-α) yt-1 + α (1-α)2yt-2 + α(1-α)3yt-3 + (1-α)4Ft-3 

Generalizing, 

 

Ft+1 = ∑ 𝛼𝑡−1
𝑖=0 (1-α)i yt-i + (1-α)t F1 

 

The series of weights used in producing the forecast Ft  are α , α (1-α ), α(1-α)2 , 

α(1-α)3…. These weights decline toward zero in an exponential fashion; thus, as 

we go back in the series, each value has a smaller weight in terms of its effect 

on the forecast. The exponential decline of the weights towards zero is evident. 

 

 



Choosing α: 

After the model is specified, its performance characteristics should be verified 

or validated by comparison of its forecast with historical data for the process it 

was designed to forecast. 

We can use the error measures such as MAPE (Mean absolute percentage error), 

MSE (Mean square error) or RMSE (Root mean square error) and α is chosen 

such that the error is minimum. 

Usually the MSE or RMSE can be used as the criterion for selecting an 

appropriate smoothing constant. For instance, by assigning a values from 0.1 to 

0.99, we select the value that produces the smallest MSE or RMSE  

 

Since F1 is not known, we can: 

 Set the first estimate equal to the first observation. Thus we can use 1 

 Use the average of the first five or six observations for the initial 

smoothed value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DOUBLE EXPONENTIAL SMOOTHIG-HOLT’S TREND METHOD 

 

Under the assumption of no trend in the data, simple exponential smoothing 

yields goods results but it fails in case of existence of trend. Double exponential 

smoothing is used when there is a linear trend in the data. 

The basic idea behind double exponential smoothing is to introduce a term to 

take into account the possibility of a series exhibiting some form of trend. This 

slope component is itself updated via exponential smoothing. 

Suppose the data exhibits a linear trend as: 

yt = b0 + b1t + et 

 

where, b0 and b1 may change slowly with time. 

The basic equations for Holt’s Method are: 

1. µt = αyt + (1 - α) (µt - 1 + T t - 1)  

2. Tt = β(µt - µt - 1) + (1 - β )Tt - 1  

3. Ft+m = µt + mTt  

where 

 µt  Exponentially smoothed value of the series at time t 

yt Actual observation of time series at time t 

Tt Trend Estimate 

αExponential Smoothing Constant for the data 

βSmoothing constant for trend 

Ft+mm period ahead forecasted value 

The difference between 2 successive exponential smoothing values is (µt - µt - 1) 

used as an estimate of the trend. The estimate of the trend is smoothed by 

multiplying it by β and then multiplying the old estimate of the trend by (1 – β). 

To forecast, the trend is multiplied by the number of periods ahead that one 

desires to forecast and then the product is added to µt. 



Choice of  α and β 

Choose one that minimize MSE or MAPE.  

Initialization 

Level : µ1 = y1 

Trend : T1 =( y2 – y1)/(T2-T1) or ( y4 – y1)/(T4-T1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TRIPLE EXPONENTIAL SMOOTHING HOLT’S WINTERS TREND AND 

SEASONALITY METHOD: 

Under the assumption of presence of only linear trend in the data, double 

exponential smoothing yields goods results but it fails in case of existence of 

trend and seasonality. Triple exponential smoothing is used when there is trend 

in the data along with seasonal variations. 

 

Two Holt-Winters methods are designed for time series that exhibit linear trend  

1. Additive Holt-Winters method: used for time series with constant 

(additive) seasonal variations 

2. Multiplicative Holt-Winters method: used for time series with increasing 

(multiplicative) seasonal variations 

 

 

Holt- Winter’s Trend and Seasonality Method for Multiplicative Model: 

It is generally considered to be best suited to forecasting time series that can be 

described by the equation: 

yt = (Tt*St*It) 

 

This method is appropriate when a time series has a linear trend with a 

multiplicative seasonal pattern.  

 

 Smoothing equation for the series  

µt=α 
𝑌𝑡

𝑆𝑡−𝑝
 + (1- α) (µt-1+ bt-1)                0≤ α ≤1 

 Trend estimating equation  

bt  = β(µt- µt-1) + (1- β) bt-1 

 Seasonality updating equation 

St = γ
𝑌𝑡

µt
 + (1- γ) St-p 

 Forecast equation 

Ft+m = (µt + m bt) St+m-p 



where  

µt Exponentially smoothed value of the series at time t 

yt Actual observation of time series at time t 

Tt Trend Estimate 

αExponential Smoothing Constant for the data 

βSmoothing constant for trend 

γ Smoothing constant for seasonality 

Ft+mm period ahead forecasted value 

p the period of seasonality ( p=4 for quarterly data & p=12 for monthly data 

 

Initialising: 

µp = (y1 + y2 +…..yp) / p 

bp = ( (yp+1 + yp+2 +...yp+p)-(y1+y2+….yp) ) / p2 

Si = yi / µp           i=1,2,3….p 

 

Choice of α,β,γ 

α is used to smooth randomness, β to smooth trend and  γ to smooth 

seasonality. Choose α,β,γ which minimize MSE or MAPE. 

 

 

 

 

 

 

 

 

 



Holt- Winter’s Trend and Seasonality Method for Additive Model: 

It is generally considered to be best suited to forecasting time series that can be 

described by the equation: 

yt=(Tt + St +It) 

 

 Exponentially smoothed series equation  

µt=α  (yt-St-p) + (1- α) (µt-1-+bt-1)                0≤ α ≤1 

 Trend estimating equation  

bt  = β(µt- µt-1) + (1- β) bt-1 

 Seasonality updating equation 

St = γ (yt-µt)+ (1- γ) St-p 

 Forecast equation 

Ft+m = µt + m bt+St+m-p 

 

where  

µt Exponentially smoothed value of the series at time t 

yt Actual observation of time series at time t 

Tt Trend Estimate 

αExponential Smoothing Constant for the data 

βSmoothing constant for trend 

γ Smoothing constant for seasonality 

Ft+mm period ahead forecasted value 

p the period of seasonality ( p=4 for quarterly data & p=12 for monthly data) 

 



Initialising: 

µp = (y1 + y2 +…..yp) / p 

bp = ( (yp+1 + yp+2 +...yp+p)-(y1+y2+….yp) ) / p2 

Si = yi -µp           i=1,2,3….p 

 

Choice of α,β,γ 

α is used to smooth randomness, β to smooth trend and  γ to smooth 

seasonality. Choose α,β,γ which minimize MSE or MAPE. 

 

 

 

 

 

 



 Time series- A time series consists of data which are arranged chronologically. It 

establishes a relationship between two variables in which one of the variable is 

independent variable i.e. the time and other variable y is the dependent variable whose 

value changes with regard to time variable e.g. total agricultural production in different 

years. 

Mathematically, a time series is defined by the values Y1, Y2, Y3… Yn of the variable 

Y at times t1, t2, t3… tn.  

 

Symbolically, Y = f (t), i.e., Y is a function of time t. 

 

Components of time series 

 

A time series consists of the following four components- 

 Trend 

 Seasonal variations 

 Cyclical variations 

 Irregular variations 

 

 Trend-Trend refers to long term movement in the time series, i.e. Trend refers to the 

ability of the time series to increase or to decrease or to remain constant over a long 

period of time. If the values of the variable are scattered around a straight line, then we 

have a linear trend. Otherwise, the trend is non-linear e.g. long- term changes in 

productivity. 

 

 Seasonal variations- Seasonal variations involve patterns of change within a year 

that tend to be repeated from year to year. They are short- term periodic movements. 

The time interval of occurrence of seasonal variations may vary from a few hours to a 

few weeks or a few months. To note the seasonal variations, the data must be recorded 

at least quarterly, monthly, weekly, or daily depending on the nature of the variable 

under consideration. 

 

 Cyclical variations- Cyclical variations are oscillatory variations in the time series that 

oscillate around the trend line with period of oscillation as more than one year. These 



variations do not follow any regular pattern and move in somewhat unpredictable 

manner. These are upswings and downswings in the time series that are observable over 

extended periods of time. 

 

 Irregular variations- The irregular component of the time series is the residual factor 

that accounts for the deviations of the actual time series values from what we would 

expect from the trend, seasonal, and cyclical components. It accounts for the random 

availability in the time series. The irregular component is caused by the short-term, 

unanticipated, and non-recurring factors that affect the time series, viz. earthquakes, 

floods etc. 

 

MODELS OF DECOMPOSITION 

 There are two models of decomposition of time series: 

 

 The additive model- This model is used when it is assumed that the four 

components are independent of one another, i.e., when the pattern of occurrence 

and the magnitude of movement in any particular component are not affected 

by other components under this assumption, the magnitude of time series (Y(t)), 

at any time t is the sum of the separate influences of its four components, i.e. 

Y(t)= T(t) + S(t)+ C(t)+ I(t) 

 

where    T(t)= Trend variations 

   S(t)= seasonal variations      

   C(t)= cyclical variations 

    I(t)= irregular variations 

 

 Multiplicative model-This model is used when it is assumed that the 

components may depend on each other. 

   

  Y(t)= T(t)*S(t)*C(t)*I(t) 

 



MEASUREMENT OF TREND: Methods of measuring trend are as follows: 

I. Free hand method or graphical method 

II. Semi averages method 

III. Method of least squares 

IV. Moving averages method 

 

 Free hand method or Graphical method- Original time series values are plotted for 

the values of Y(t) (on Y-axis) against t (on X-axis) to get an idea about the trend 

exhibited by the time series. 

 

  Semi-average method- 

Steps 

i. Divide the series into two equal parts. 

ii. Take average of each part separately. 

iii. Plot the average of each part against the middle of the time period covered by the 

respective parts. 

iv. Join the plotted points. 

Note- If the number of time periods is even, we can divide such a data into two equal 

parts without ignoring any observation but if the number of time periods is odd, the 

normal practice is to ignore the middle period and divide the resulting series into two 

halves.  

 

Q. Compute trend by the semi- average method of the following data: 

Year Sales (lakhs of Rs.) Semi- total Semi- average 

    

1991 38   

1992 40   

1993 46 224 44.8 

1994 49   



1995 51   

1996    55   

1997 61   

1998 63   

1999 69 345 69.0 

2000 72   

2001 80   

    

 

These two semi- averages are plotted in the middle of the respective time spans. Thus 44.8 

is plotted against 1993; and 69.0 against 1999. These two points are then connected by a 

straight line. 

 Method of least squares 

 

i. Fitting a straight line(Line of best fit)- 

The equation of straight line is of the form Y= a+bX 

By the method of least squares, the normal equations to find the values of 

a and b are 

∑Y=na+b∑X 

∑XY=a∑X+b∑(X^2) 

 

Q. The following are the annual profits in thousands in a certain business. By the method 

of least squares fit a straight line. 

Year Profits(000) t-1994 

   (X) 

XY  X^2              Y_cap 

1991 60 -3 -180 9  



1992 72 -2 -144 4  

1993 75 -1 -75 1  

1994 65 0 0 0 Y_cap=76+4.857*X 

1995 80 1 80 1  

1996 85 2 170 4  

1997 95 3 285 9  

      

N=7 ∑Y ∑X=0 ∑XY= ∑X^2=  

 =532  136 28  

      

      

The equation of straight line trend is Y_cap= a+b*X 

By the method of least squares  

a=∑Y/N= 76 

b=∑X*Y/∑X^2=4.857 

The trend equation would be Y_cap= 76+ 4.857*X 

 

 

ii. Fitting a quadratic trend- 

Y=a+bX+cX^2 

  In this case, the normal equations by the method of least squares are 

  ∑Y=na+b∑X+c∑(X^2) 

  ∑XY=a∑X+b∑(X^2)+c∑(X^3) 

  ∑X^2*Y=a∑(X^2)+b∑(X^3)+c∑(X^4) 

  

  

 



Q. Fit a quadratic trend on the following data. 

   

X 0 1 2 3 4 

Y 1.0 1.5 1.5 2.3 3.5 

 

Sol. 

   

X Y X^2 X^3 X^4 X*Y (X^2)*Y 

0 1 0 0 0 0 0 

1 1.5 1 1 1 1.5 1.5 

2 1.5 4 8 16 3 6.0 

3 2.5 9 27 81 7.5 22.5 

4 3.5 16 64 256 14 56.0 

∑=10 ∑=10 ∑=30 ∑=100 ∑=354 ∑=26 ∑=86 

 

By fitting the normal equations, we get 

 10=5a+10b+30c 

 26=10a+30b+100c 

 86=30a+100b+354c 

 Solving we get 

  a=1.086 

  b=0.028 

  c=0.143 

 Hence, the quadratic trend trend is given by 

  Y=1.086+0.028*X+0.143*(X^2) 

 

iii. Exponential curves for trend values- 

The equation of the exponential curves is of the following form: 

   y=a(b^x) 

 After taking the logarithm on both sides, the normal equations are 

    ∑logy=nloga+ logb∑x 

    ∑(xlogy)=loga∑x+logb∑(x^2) 

  OR 



    ∑Y=nA+B∑x 

    ∑(xY)=A∑x+B∑(x^2) 

Where, A = log a and B = log b 

 

 Method of moving averages 

This method measures trend by smoothing out the fluctuation of the data by means of 

moving average where a moving average of period ‘m’ is a series of successive 

averages of ‘m’ terms at a time by starting with 1st, 2nd, 3rdterm and so on. That 

means the 1staverage is the average of 1st m terms, 2nd average is the average of m 

terms starting from 2nd to (m+1)th term , 3rd average is the average of m terms starting 

from 3rd to (m+2)th term and so on. 

 

Case 1: 

If m is odd i.e. m = 2n+1  

Then the average is placed against the middle of time interval which it covers, i.e. t = 

n+1. 

 

Case 2: 

If m is even i.e. m = 2n 

Then the average is placed between 2 middle values of the time interval which it 

covers i.e. t = n & t = n+1. 

So in this case the moving average value doesn’t coincide with the original time period 

and thus to make it coincide with the original time period we find centered moving 

average value by finding average of two periods at a time. 

 

Q. Calculate the 5- yearly moving averages for the following data: 

 

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

Value(‘000rs) 123 140 110 98 104 133 95 105 150 135 

 

 



 

 

Sol.  

Year Value(‘000rs) 5-yearly moving 

total(“000rs) 

5-yearly moving 

average(‘000rs) 

1991 123 - - 

1992 140 - - 

1993 110 575 115 

1994 98 585 117 

1995 104 540 108 

1996 133 535 107 

1997 95 587 117.4 

1998 105 618 123.6 

1999 150 - - 

2000 135 - - 

 



MEASUREMENT OF SEASONAL VARIATIONS 

The following methods are employed to measure seasonal variations: 

 

Method of simple Averages 

Steps involved: 

 

(i) Find the quarterly (or seasonal) averages. 

(ii) Find the average of quarterly (or seasonal) averages. 

(iii) Express each quarterly (or seasonal) averages as a percentage of 

average of quarterly (or seasonal) averages. This gives seasonal indices. 

 

Q. Assuming no trend in the series, calculate seasonal indices for the following data: 

 

Year I quarter II quarter III quarter IV quarter 

1994 78 66 84 80 

1995 76 74 82 78 

1996 72 68 80 70 

1997 74 70 84 74 

1998 76 74 86 82 

 

Sol.  Avg. of Quarterly averages = 76.4 

   

Year I II III IV 

1994 78 66 84 80 

1995 76 74 82 78 

1996 72 68 80 70 

1997 74 70 84 74 

1998 76 74 86 82 

Quarterly total 376 352 416 384 

Quarterly Average 75.2 70.4 83.2 76.8 

Seasonal indices  75.2/76.4*100 

=98.43 

70.4/76.4*100 

=92.15 

83.2/76.4*100 

=108.90 

76.8/76.4*100 

=100.52 

 

          Quarter     

 



Ratio to trend method 

Steps involved: 

(i) Find the trend values with the help of method of least squares. 

(ii) Divide the given original data (quarterly or monthly) by corresponding 

trend value and multiply this by 100 (i.e. they are trend eliminated). The 

values so obtained are free from trend. 

(iii) Find the quarterly or monthly (as the case may be) averages of trend 

eliminated values.  

(iv)  Add the quarterly (or monthly) averages and the sum is say S and find 

constant factor by dividing 400 (or 1200) by S.  

(v) Multiply each quarterly (or monthly) average obtained in step (iii) by 

the constant factor obtained in step (iv). 

Q. For the given data below compute seasonal variations using ratio to trend method. 

Year I II III IV 

1996 60 80 72 68 

1997 68 104 100 88 

1998 80 116 108 96 

1999 108 152 136 124 

2000 160 184 172 164 

Sol. First determine the trend on yearly basis and later we compute quarterly trend values. 

Year 

 

X 

 

Yearly 

total 

Quarterly 

average(Y) 

Deviations from 

mid- value, i.e. 

1998, x= 

X-1998 

x*Y x^2 Y_cap 

1996 280 70 -2 -140 4 64 

1997 360 90 -1 -90 1 88 

1998 400 100 0 0 0 112 

1999 520 130 1 130 1 136 

2000 680 170 2 340 4 160 

N=5  ∑=560 0 ∑=240 ∑=10  

  a=∑Y/N=112; b=∑xY/∑(x^2)=24 

  Y_cap = 112 + 24*x  = 112+24(X-1998) 

  Yearly increment=24; Quarterly increment=24/4=6 



Calculation of quarterly trend values: 

Consider 1996, trend value for middle quarter, i.e. half of 2nd and half of 3rd is 64. Quarterly 

increment is 6. So the trend value of 2nd quarter is 64-6/2=61 and for 3rd quarter is 64+6/2=67. 

Trend value for the first quarter is 61-6=55 and of the 4th quarter is 67+6=73. 

 

    Quarterly trend values 

Year I II III IV 

1996 55 61 67 73 

1997 79 85 91 97 

1998 103 109 115 121 

1999 127 133 139 145 

2000 151 157 163 169 

The given values of the time series will now be expressed as percentages of the 

corresponding trend values given above. These are trend eliminated values. 

 

Trend eliminated values 

Year I II III IV 

1996 109.09 131.15 107.46 93.15 

1997 86.08 122.35 109.89 90.72 

1998 77.67 106.42 93.91 79.34 

1999 85.04 114.29 97.84 85.52 

2000 105.96 117.20 105.52 97.04 

Total  463.84 591.41 514.62 445.77 

Quarterly 

average 

92.77 118.28 102.92 89.15 

Seasonal 

Indices 

92.05 117.36 102.12 84.47 

 

60/55*100=109.09, 80/61*100=131.15, etc. 

 Sum of the quarterly averages= 403.12 

Constant factor=400/403.12=0.99226 

Seasonal index for the first quarter=92.77*0.992226=92.05 

Seasonal index for the second quarter=118.28*0.992226=117.36, and so on. 



Ratio to Moving Average (or percentage of Moving Average) method 

     Steps involved: 

(i) Take centered 12 monthly (or 4 quarterly) moving average 

values. 

(ii) Express the original data as a percentage of the centered moving 

average values. 

(iii) Arrange these percentage season wise for all the years. Average 

these percentages. These values are the preliminary seasonal 

indices. 

(iv) Add these indices. If the sum is not 1200 or 400 for monthly or 

quarterly figures respectively. Then, multiply each value by the 

constant factor as explained below. 

 

Constant factor = 1200/ sum of monthly indices or 

      = 400/sum of quarterly indices 

This gives adjusted seasonal indices. 

 

Q. Calculate seasonal indices by the ratio-to-moving average method from the following 

data: 

Year I II III IV 

1997 68 62 63 78 

1998 75 58 56 72 

1999 60 63 67 93 

2000 54 59 56 90 

2001 59 55 58 65 

 

 



Sol. 

 

 

Year Quarters Barely 

prices(rs) 

4-

Figure 

moving 

total 

2-figure 

moving 

total 

4-figure 

moving 

average 

Given figures as %of 

moving average 

Col.3/col.6*100 

1 2 3 4 5 6 7 

1997 

                       

 

 

1998 

 

 

 

1999 

 

 

 

2000 

 

 

 

2001 

QI 

QII 

QIII 

QIV 

QI 

QII 

QIII 

QIV 

QI 

QII 

QIII 

QIV 

QI 

QII 

QIII 

QIV 

QI 

QII 

QIII 

QIV 

 

68 

62 

63 

78 

75 

58 

56 

72 

60 

63 

67 

93 

54 

59 

56 

90 

59 

55 

58 

65 

- 

- 

271 

278 

274 

267 

261 

246 

251 

262 

283 

277 

273 

262 

259 

264 

260 

262 

237 

- 

- 

- 

- 

549 

552 

541 

528 

507 

497 

513 

545 

560 

550 

535 

521 

523 

524 

522 

499 

- 

- 

68.63 

69.00 

67.63 

66.00 

63.38 

62.13 

64.13 

68.13 

70.00 

68.75 

66.88 

65.13 

65.38 

65.50 

65.25 

62.38 

 

 

- 

- 

(63/68.83)*100=91.79 

(78/69)*100=113.04 

(75/67.63)*100=110.90 

(58/66)*100=87.88 

(56/63.38)*100=88.36 

(72/62.13)*100=115.89 

(60/64.13)*100=93.56 

(63/68.13)*100=92.47 

(67/70)*100=95.71 

(93/68.75)*100=135.27 

(54/66.88)*100=80.74 

(59/65.13)*100=90.59 

(56/65.38)*100=85.65 

(90/65.50)*100=137.50 

(59/65.25)*100=90.42 

(55/62.38)*100=88.17 

 

 

 

 



 

Ratio to moving average values 

Year I II III IV 

1997 - - 91.79 113.04 

1998 110.90 87.88 88.36 115.89 

1999 93.56 92.47 95.71 135.27 

2000 80.74 90.59 85.65 137.50 

2001 90.42 88.17 - - 

Total  375.62 359.11 361.51 501.17 

Quarterly 

averages 

93.9 89.77 90.373 125.3 

 

Total of quarterly averages=399.345 

Adjusted seasonal indices=93.9*400/399.345=94.05,  

  87.77*400/399.345=89.91 

     90.375*400/399.345=90.52,  

  125.3*400/399.345=125.50 

 

 

 

 

 

 

 

 

 

 

 



 

Measurement of Cyclical Variation 

We know that a time series consisting of annual data for longer periods is depicted by trend lines. This 

facilitates us to isolate the component of secular trend variation from the series and examine it for 

cyclical, seasonal and irregular components. Here, we will look at "Residual Method", by which one 

can isolate the cyclical variation component. This method can be bifurcated into two measures:  

 Percent of Trend method 

 Relative Cyclical Residual method.  

Both these measures are expressed in terms of percentage. We look at each of them. 

1. Percent of Trend Method: 

When the ratio of actual values (Y) and the corresponding estimated trend values ( Ŷ ) is multiplied by 

100, we are expressing the cyclical variation component as a percent of trend. Mathematically, we 

express it as 

              (Y/ Ŷ ) * 100 

 

2. Relative Cyclical Residual Method: 

In this measure, we take the ratio of the difference between the Y and the corresponding Ŷ values (that 

is, Y - Ŷ ), and the  Ŷ  values. To express these values in terms of percentage we multiply them by 100. 

In other words, the percentage deviation from the trend is found for all the values in the series. 

Mathematically, this is expressed as: 

[ (Y- Ŷ)/ Ŷ ] * 100   

 



Example: 

      Year (t)          Y     Yₑ      (Y/Yₑ)*100      Y-Yₑ        ((Y-Yₑ)/Yₑ)*100 

1989            77    83        92.77               -6              -7.22     

1990       88     85       103.52              3                3.52 

1991       94     87       108.04              7                8.04 

1992       85     89       95.50               -4              -4.49 

1993       91     91       100.00              0                0 

1994       98     93       105.37              5               5.37 

1995       90     95        94.73              -5             -5.26 

 

In 1989, the percentage of trend indicates that the actual sales were 92.77% of the expected sales for 

that year.  

For the same year, the relative cyclical residual indicates that the actual sales were 7.22% short of the 

expected value. 

 

 

 

 

 

 

 



Methods to measure accuracy of the fitted model 

• Mean absolute error(MAE)  

    MAE=Mean |e(t)| 

• Mean square error(MSE)  

    MSE=Mean {e(t)^2} 

Since, both these methods are scale dependent, we cannot use them to compare series which are on 

different scales.  

For such purpose, we use Mean absolute percentage error (MAPE) 

             i.e.    Mean|p(t)| 

where, p(t)=e(t)/y(t)*100 

 



 

STATIONARY RANDOM SERIES 

A strictly stationary stochastic process is one where given t1, . . ., tn; the joint 

statistical distribution of Xt1 , . . ., Xtn is the same as the joint statistical 

distribution of Xt1+τ, . . ., Xtℓ+τ for all ℓ and τ .  

This is an extremely strong definition: it means that all moments of all degrees 

(expectations, variances, third order and higher) of the process, anywhere are 

the same. It also means that the joint distribution of (Xt , Xs) is the same as (Xt+r, 

Xs+r) and hence cannot depend on s or t but only on the distance between s and 

t, i.e. s − t. 

 Since the definition of strict stationarity is generally too strict for everyday life 

a weaker definition of second order or weak stationarity is usually used. 

 Weak Stationarity or Covariance Stationarity means that mean and the 

variance of a stochastic process do not depend on t (that is they are constant) 

and the autocovariance between Xt and Xt+τ only can depend on the lag τ (τ is an 

integer, the quantities also need to be finite). Hence for stationary processes, 

{Xt}, the definition of autocovariance is  

γ(τ ) = cov(Xt , Xt+τ ), for integers τ . 

 

AUTO COVARIANCE FUNCTION  

Given a stochastic process {Xt}, the autocovariance is a function that gives 

the covariance of the process with itself at pairs of time points. If the process 

has the mean function , then the autocovariance is given by 

 

Autocovariance is related to the more commonly used autocorrelation of the 

process in question. 

http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Autocorrelation


In the case of a random vector , the autocovariance would 

be a square n X n matrix  with entries  This is 

commonly known as the covariance matrix or matrix of covariances of the given 

random vector. 

 

AUTO CORRELATION FUNCTION 

In general, the autocorrelation of a random process describes 

the correlation between values of the process at different times, as a function 

of the two times or of the time lag. Then Xi is the value (or realization) produced 

by a given run of the process at time i. Suppose that the process is further known 

to have defined values for mean μi and variance σi
2 for all times i. Then the 

definition of the autocorrelation between times s and t is 

 

 

where "E" is the expected value operator. Note that this expression is not well-

defined for every time series or process, because the variance may be zero (for 

a constant process) or infinite. If the function R is well-defined, its value must lie 

in the range [−1, 1], with 1 indicating perfect correlation and −1 indicating 

perfect anti-correlation. 

If Xt is a wide-sense stationary process, then the mean μ and the variance σ2 are 

time-independent, and further the autocorrelation depends only on the lag 

between t and s: the correlation depends only on the time-distance between 

the pair of values but not on their position in time. This further implies that the 

autocorrelation can be expressed as a function of the time-lag, and that this 

would be an even function of the lag τ = s − t. This gives the more familiar form 

http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Random_process
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Realization_(probability)
http://en.wikipedia.org/wiki/Execution_(computing)
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Negative_relationship
http://en.wikipedia.org/wiki/Stationary_process#Weak_or_wide-sense_stationarity
http://en.wikipedia.org/wiki/Even_and_odd_functions


 

 

and the fact that this is an even function can be stated as 

 

 

AUTO REGRESSIVE (AR) PROCESS 

An auto regressive process of order p, i.e. AR (p) is a sequence of random 

variables {Xt} characterised by 

 Xt = µ +α1Xt−1 + α2Xt−2 + · · · + αpXt−p + et, (11.16) where {et} is a purely random 

process and represents the error term. 

 

MOVING AVERAGE (MA) PROCESS: 

A moving average process of order q, i.e. MA(q) is a sequence {Xt} of random 

variables such that: 

 

where μ is the mean of the series, the θ1, ..., θq are the parameters of the 

model and the εt, εt−1,..., εt−q are white noise error terms.  

Thus, a moving-average model is conceptually a linear regression of the current 

value of the series against current and previous (unobserved) white noise error 

terms or random shocks. The random shocks at each point are assumed to be 

mutually independent and to come from the same distribution, typically 

a normal distribution, with location at zero and constant scale. Fitting the MA 

estimates is more complicated than with autoregressive models (AR models) 

because the lagged error terms are not observable. This means that 

http://en.wikipedia.org/wiki/Even_and_odd_functions#Even_functions
http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Autoregressive_model


iterative non-linear fitting procedures need to be used in place of linear least 

squares. 

The moving-average model is essentially a finite impulse response filter applied 

to white noise, with some additional interpretation placed on it. The role of the 

random shocks in the MA model differs from their role in the AR model in two 

ways. First, they are propagated to future values of the time series directly: for 

example,  appears directly on the right side of the equation for . In 

contrast, in an AR model  does not appear on the right side of 

the  equation, but it does appear on the right side of the  equation, 

and  appears on the right side of the  equation, giving only an indirect 

effect of    on . Second, in the MA model a shock affects  values only for 

the current period and q periods into the future; in contrast, in the AR model a 

shock affects  values infinitely far into the future, because  affects , which 

affects , which affects , and so on forever. 

 

WHITE NOISE PROCESS 

 A white noise process is a random process of random variables {Xt} that 

are uncorrelated, have mean zero, and a finite variance (which is denoted 

s2 below). 

Formally, et is a white noise process if E (et) = 0, E(et
2) = s2, and E(et ej) = 0 for t 

not equal to j, where all those expectations are taken prior to times t and j. 

 

AUTO REGRESSIVE MOVING AVERAGE (ARMA) PROCESS  

Autoregressive–moving-average (ARMA) models provide a parsimonious 

description of a (weakly) stationary stochastic process in terms of two 

http://en.wikipedia.org/wiki/Curve_fitting
http://en.wikipedia.org/wiki/Finite_impulse_response
http://economics.about.com/cs/economicsglossary/g/correlation.htm
http://en.wikipedia.org/wiki/Stationary_stochastic_process


polynomials, one for the auto-regression and the second for the moving 

average. 

Given a time series of data Xt, the ARMA model is a tool for understanding and, 

perhaps, predicting future values in this series. The model consists of two parts, 

an autoregressive (AR) part and a moving average (MA) part. The model is 

usually then referred to as the ARMA (p, q) model where p is the order of the 

autoregressive part and q is the order of the moving average part  

The notation ARMA (p, q) refers to the model with p autoregressive terms 

and q moving-average terms. This model contains the AR (p) and MA (q) models, 

 

 

The error terms  are generally assumed to be independent and identically 

distributed random variables (i.i.d.) sampled from a normal distribution with 

zero mean:  ~ N (0, σ2) where σ2 is the variance. These assumptions may be 

weakened but doing so will change the properties of the model. In particular, a 

change to the i.i.d. assumption would make a rather fundamental difference. 

 

ARMA (p, 0)  AR (p) 

ARMA (0, q)  MA (q) 

 

AUTO REGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) PROCESS 

An autoregressive integrated moving average (ARIMA) model is a 

generalization of an autoregressive moving average (ARMA) model. These 

models are fitted to time series data either to better understand the data or to 

http://en.wikipedia.org/wiki/AR_model
http://en.wikipedia.org/wiki/MA_model
http://en.wikipedia.org/wiki/MA_model
http://en.wikipedia.org/wiki/Independent_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Independent_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Autoregressive_moving_average
http://en.wikipedia.org/wiki/Time_series


predict future points in the series (forecasting). They are applied in some cases 

where data show evidence of non-stationarity, i.e. when the mean & variance 

of some of the time series may be time variant.  

 

 
            
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

http://en.wikipedia.org/wiki/Forecasting
http://en.wikipedia.org/wiki/Stationary_process

