E-R modelling is termed as Entity — Relationship modelling. It is a graphical representation of
entities and their relationships to each other It defines the conceptual view of a database. It
works around real-world entities and the associations among them. At view level, the ER model
is considered a good option for designing databases.

The building blocks of an E-R Model are:

1. Entity
2. Attribute
3. Relationship

1. Entity: It is a basic object that the ER model represents and it is a thing in the physical world
with independent existence. The existence can be physical (car, house, employee, etc.) or
conceptual existence (company, university, job, etc.).

2. Attributes: They are the properties that describe an entity. For instance, an entity “Student”
can have attributes like “Name”, “Date of birth”, “Address”, etc. Attributes can be further
divided into various sub-categories:

e Composite vs. Simple attributes: Composite attributes can be further divided into
smaller sub-components, each having its own independent meaning. For example, an
attribute “address” can have individual components like “house number”, “locality
name”, etc. Simple attributes cannot be further divided.

e Single-valued vs. Multivalued attributes: Attributes having only one value for a
particular entity are known as single-valued attributes. Example: the attribute “age” for
a person can have only one value as a person cannot have more than one age value. On
the other hand, a multivalued attribute can take multiple values for a single entity.
Example: an entity “student” can have multiple “degrees”.

e Stored vs. derived attributes: When two or more attributes are related, often one is
dependent on the other. For instance, if the “date of birth” of a person becomes the
stored attribute, then the “age” of that person becomes the derived attribute.

If an entity has a unique identifier attribute, such that all the values of that attribute are distinct
for each individual entity in the entity set, then that attribute is known as the key attribute. For
Example: For Student entity, “Roll no.” is a key attribute. An entity which has a key attribute
of its own is known as a Strong entity.

Some entity types can have more than one key attribute. In case an entity type has no key, it is
known as the weak entity type. A weak entity type normally has a partial key, which is the
attribute that can uniquely identify weak entities that are related to the same owner entity, and
is represented in the model by a dotted line under the particular attribute.

Each attribute has a value set or domain of values, which provides the set of values that can

be assigned to that attribute for each individual entity in the entity set. For example, an entity
“employee” having the attribute “age” can only take values between 18 and 60, if retirement

age is 60.

3. Relationships: A relationship identifies how entities are related to each other and amongst
themselves.

TYPE/DEGREE OF RELATIONSHIPS:

1. Unary or recursive relationship: It is a relationship in which an entity is related to itself
or when both participants in the relationship are the same entity.

For example: Student is related to other student through “Classmate” relationship.

2. Binary relationship: A binary relationship exists when two entities participate and are
related to each other.

For example: Relationship between Teacher and Student entities.

3. Ternary Relationship: A ternary relationship exists when three entities participate in the
relationship.

For example: Relationship between Teacher, Student and Course entities.

4. N-ary Relationship: It is a relationship in which N-entities are related.

CARDINALITY: Cardinality is the number of relationship instances in which entities can
participate.

It may be a one to one (1:1), one to many (1: M), many to one (M: 1) or many to many
(M: N).

e ONE-TO-ONE (1:1): Relationship between Head and Department.
A Head manages one department.

Each department is managed by one Head.

e ONE-TO-MANY (1: M): Relationship between Department and Course.
A Department offers many Courses.

¢ MANY-TO-MANY (M:N) : Relationship between Teacher and Students.
A teacher teaches many students.
Each student is taught by many teachers

Weak Entity sets and Strong Entity sets and ldentifying relationships

Entity types that do not have a key attribute of their own are called weak entity types. In contrast
the regular entities that do have a key attribute are called strong entity types.

The existence of a weak entity set depends on the existence of a strong entity set. Weak entity
set is represented by double-line rectangle.

Identifying relationships is the relationship between weak entity sets and strong entity sets. It
is represented by double-line diamond.

The discriminator or partial key of a weak entity set is the set of attributes that distinguishes
among all the entities of a weak entity set. The primary key of a weak entity set is formed by
the primary key of strong entity sets on which the weak entity set is existence dependent plus
the weak entity set’s discriminator.

E-R Modelling Notations

Symbol Meaning
Entity
© Attribute
<> Relationship
¢ \‘\
R s P ’ Derived Attribute

Key attribute

Composite attribute
OO

© Multi valued attribute
Weak entity
<>> Identifying Relationship
M N Cardinality ratio M:N
E1 < > _ | E2

Total Participation of E2 in R
El - — E2

Steps involves in developing an ER diagram:

Step 1: Specify the Assumptions.

Step 2: Identify the Entities involved.

Step 3 ldentify attributes of all the entities and classify them accordingly.
Step 4: Identify the relationships among various entities.

Step 5: identify the cardinalities.

Step 6: Draw complete ER diagram

EER Model: The Enhanced entity-relationship (EER) model (or extended entity—
relationship model) in computer science is a high-level or conceptual data model incorporating
extensions to the original entity—relationship (ER) model, used in the design of databases.

Additional Concepts included in EER are explained below:

SUBCLASSES AND SUPERCLASSES

e Anentity type may have additional meaningful subgroupings of its entities. Entity type
A is a subclass of an entity type B if and only if every A is necessarily a B.

e Subclass inherits all the attributes and relationship of its superclass entity called
attribute and relationship inheritance.

e A ssubclass may have its own attributes and relationships (called specific attributes and
relationships) along with the attributes and relationships inherited from the superclass.

e Example: EMPLOYEE may be further grouped into:
SECRETARY, ENGINEER, TECHNICIAN (Based on the EMPLOYEE’s Job)
SALARIED_EMPLOYEE, HOURLY_EMPLOYEE (Based on the EMPLOYEE’s
method of pay)

e Each of these subgroupings is a subset of EMPLOYEE entity and are called a
subclasses of EMPLOYEE

e EMPLOYEE is the superclass for each of these subclasses

e Superclass/subclass relationships:
EMPLOYEE/SECRETARY
EMPLOYEE/TECHNICIAN
EMPLOYEE/MANAGER

e These are also called IS-A relationships (SECRETARY IS-A EMPLOYEE,

TECHNICIAN IS-A EMPLOYEE.. etc.).

https://en.wikipedia.org/wiki/Conceptual_schema
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Database

Attribute Inheritance in Superclass / Subclass Relationships

An entity that is member of a subclass inherits

e All attributes of the entity as a member of the superclass

e Allrelationships of the entity as a member of the superclass

In the above example, SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the
attributes Name, SSN, ..., from EMPLOYEE.

Specialization

Specialization is the abstracting process of introducing new characteristics to an existing class
of objects to create one or more new classes of objects.
In simple terms, when a higher level entity is broken down into some lower level entities then

we call this process specialization.

Example:

Student

— -

Top

o
Down '
Process ///::\§>
\\A
_/ s r S

Ex—-Student Curr Student

Types of Specialization:

1. Predicate Defined or Condition defined specialization:
In a predicate-defined (or condition-defined) subclass, the subclass membership of an

entity can be determined from its attribute values in the superclass.

e.g.

| STUDENT |

Unsuccessfull

2. Attribute Defined specialization: A specialization having single common defining

attribute and is known as Attribute defined specialization. E.g. {Current Student, Ex
Student} specialization of Student entity based on type of student as follows.

STUDENT

CURRENT

3. User Defined specialization:

A specialization that is neither predicate defined nor attribute defined and solely based

on users decision is user defined specialization.

GENERALISATION

Generalization is the reverse of the specialization process.

It is a bottom up approach where several classes with common features are generalized into a
superclass. Example: CAR, TRUCK generalized into VEHICLE

Both CAR, TRUCK become subclasses of the superclass VEHICLE.
We can view {CAR, TRUCKY} as a specialization of VEHICLE
Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK.

Diagrammatic notation are sometimes used to distinguish between generalization and
specialization. Arrow pointing to the generalized superclass represents a generalization.
Arrows pointing to the specialized subclasses represent a specialization. We do not use this
notation because it is often subjective as to which process is more appropriate for a particular

situation.

Specialization and Generalization Constraints:

1. Disjointness and overlapping constraint

Disjointness constraint specify that the subclasses of super class are disjoint i.e. an
entity which belongs to the super class belongs to at most one subclass of the
specialization. Otherwise, it is an overlapping constraint.

Represented by:

Disjointness -- @

Overlapping- - @)

2. Completeness(Total / Partial) constraint

A specialization is total in nature if an entity belonging to the super class belongs to

at least one of the subclass.

Represented by- &

If we take some entity of super class and they do not belong to any of the subclasses

then this is partial specialization.

Represented by- (5

Specialization hierarchy:

Specialization Hierarchy has the constraint that every subclass participates as a subclass in
only one class/subclass relationship, i.e. that each subclass has only one parent. This results in

a tree structure. There is single inheritance.

person
ISA
employee customer
ISA
officer teller secretury

Specialization lattice:

Specialization Lattice has the constraint that a subclass can be a subclass of more than one
class/subclass relationship i.e. a subclass has more than one superclass, and such a subclass is

called a shared subclass. This leads to multiple inheritance.

EMPLOYEE

SECRETARY || TECHNICIAN|| ENGINEER || MANAGER | | HOURLY_EMPLOYEE

| SALARIED_EMPLOYEE |

Y ¢

ENGINEERING_MANAGER |

A specialization lattice with shared subclass ENGINEERING_MANAGER.

Categories (UNION TYPES)

So far we have seen that all the superclass/ subclass relationships have a single superclass.

But in some cases, we have a subclass participating in multiple superclass/subclass
relationships with more than one superclass. Such a subclass is called a category or UNION
TYPE.

Example: In a Database for vehicle registration, vehicle owner can be a person, a bank (holding
a lien on a vehicle) or a company.

So in this example, a category (UNION Type) called OWNER is created to represent a subset
of the union of the three Superclasses: COMPANY, BANK & PERSON.

e b i
N P
L BANK |
(::i]nver Iu::anaa na
x__NamBH 7 l::ld :'E-j @ir;;“‘- (;Eg_eﬂp_q:%;}
(san)-{ PERSON |
e St T)
-
IL .-':

Iy IL_L|::n_Lu'_rvl..‘-gula_l:r}
== St

<:IIWNS > {:Flur::has&_d@:)
N\[{;'T__ic;unea_@am__;-;:}
................................. o

| REGISTERED_VEHICLE

'l.l'ahtcm_) /_U.I ﬁlt‘JP |d::. e
EBI.‘_|.'|E|-H-\' B \ IB '.d'i'nnnag

Qr_:mke“n 1, CAR ?| | TRuck {r_rl.mi;-

Copeer) 1 (e

Two catagories (unson
types) OWHER and
REGISTERED_VEHICLE.

DATABASE ANOMALIES: Database anomalies refer to errors and inconsistencies in the
database. Anomalies creates problems while performing the operations like updation, insertion
and deletion. The anomalies can be eliminated by redefining a relation into two or more

relations.

There are three types of anomalies:
1) Update Anomaly

2) Insert anomaly

3) Delete Anomaly

Update anomaly: An update anomaly is a data inconsistency that results from data redundancy
and a partial update. If in table 1, the address of student with student ID 101 is changed, then
it has to be changed in both rows: 1 and 5, otherwise update anomaly occurs.

Insert anomaly: Inability to add data to the database due to absence of other data. Suppose in
the table 1, a new student is to be added who is yet to get admission is some department and

has not been assigned the department so far. In such cases, insert anomaly occurs.

Delete anomaly: Unintended loss of data due to deletion of other data. If we try to delete
department “Statistics” from the database, then details of student “S2” will also get deleted

even though we do want to keep student details.

Student ID Student name Address Department
101 S1 Rohini Operational Research
102 S2 Dwarka Statistics
103 S3 Narela Computer Science
104 S4 Palam Mathematics
101 S1 Rohini Operational Research

NORMALIZATION:
Normalization is a systematic approach of decomposing tables to eliminate data redundancy
and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-
step process that puts data into tabular form by removing duplicated data from the relation
tables.
Main purpose of normalization:

e Eliminating redundant (useless) data.

e Ensuring data dependencies make sense i.e. data is logically stored.

Types of normalisation:
e First Normal Form
e Second Normal Form
e Third Normal Form

e Boyce-Codd Normal Form

FIRST NORMAL FORM (INF): A table is said to be in 1NF, if it satisfies the following
properties:
e An attribute (column) of a table cannot hold multiple values.
e Any row must not have a column in which more than one value is saved, like
separated with commas.

Example: Consider the following table:

Student _id Student_name Student_address Student_Mobile No.
101 S1 New Delhi 9891989191
9911121212,
102 S2 Mumbai
9999112222
103 S3 Kolkata 9998881212
9911000123,
104 S4 Bangalore 9871987142

Two students (S2 & S4) are having two mobile numbers as seen in the table above.

This table is not in INF as the rule says “each attribute of a table must have atomic (single)
values”, the Student Mobile No. values for students S2 & S4 violate that rule.
To make the table compatible with INF, we modify the above table as follows:

Student _id Student_name Student_address Student_Mobile No.
101 S1 New Delhi 9891989191
102 S2 Mumbai 9911121212
102 S2 Mumbai 9999112222
103 S3 Kolkata 9998881212
104 S4 Bangalore 9911000123
104 S4 Bangalore 9871987142

This table satisfies the following:
e Itis in First Normal Form (1NF).

It contains redundant data.

There is no column which uniquely identifies each and every row.

Primary key = {Student_id, Student_Mobile No.}

SECOND NORMAL FORM (2NF): Atable is said to be in 2NF, if it satisfies the following
properties:

e Table should be in first normal form.

e All non-key or non-prime attributes are fully functional dependent on the primary key.
Note: An attribute, which is a part of the primary key, is known as a prime attribute. An

attribute, which is not a part of the primary key, is said to be a non-prime attribute.

Example:
Student_id Subject Age
101 Mathematical Programming 23
101 Inventory Management 23
102 Mathematical Programming 22

e Primary Key: {Student_id, Subject}. Non-prime attribute: Age.

e Thetable is in 1 NF because each attribute has atomic values. However, it is not in 2NF
because non-prime attribute age is dependent on Student_id alone which is a proper
subset of Primary key. This violates the rule for 2NF.

e To make the table compatible with 2NF, we can break it in two tables as follows:

Student_details table:

Student_id Age
101 23
102 22

Student_Subject table:

Student_id Subject
101 Mathematical Programming
101 Inventory Management
102 Mathematical Programming

THIRD NORMAL FORM (3NF): A table is said to be in 3NF, if it satisfies the following
properties:
e Table is in second normal form.

e Every non-prime attribute of table must be dependent on primary key and there should
be no transitive dependency.

Example:
Student_id City Pin Code
101 New Delhi 110001
102 Faridabad 121001

In this table, Student_id is the Primary key, and therefore non-prime attribute “City” is
dependent on “Student id” whereas other non-prime attribute “Pin Code” can be determined
by “City” alone. Thus, there is transitive dependency in this table. Now, to make the table

compatible with 3NF, we need to break it into two new tables as follows:

Student_Detail Table:

Student_id Pin Code
101 110001
102 121001
Address Table:
City Pin Code
New Delhi 110001

Faridabad 121001

BOYCE AND CODD NORMAL FORM (BCNF): A table is said to be in BCNF, if it
satisfies the following properties:

e R must be in 3rd Normal Form

e For each functional dependency (X ->Y), X should be a super Key.

Example:
Student _id Student_name Course_name Course_code
101 S1 Mathematical Programming C001
101 S1 Inventory Management C002
102 S2 Mathematical Programming C001

e Functional dependencies in the table above:

Student_id -> Student_name

Course_name -> Course_code
e Primary key: {Student_id, Course_code}

e The table is not in BCNF as neither Student_id nor Course_code alone is a key.

To make this table compatible with BCNF, we can break the table in the following manner:

Table 1:
Student_id Student_name
101 S1
102 S2
Table 2:
Course_name Course_code
Mathematical Programming C001

Inventory Management C002

Table 3:

Student_id Course_code
101 Ccoo1
101 C002
102 Ccoo1

Primary Keys:

Table 1: Student_id

Table 2: Course_code

Table 3: {Student_id, Course_code}

1.What 4o you understand by event driven programining? List and explain
about sorae of the events supported by Visual Basic Objects.

Event Driven Programming :-

In convantional programming, the sequance of operations for an application is determined by a
central controlling program (e.g., a main procedure). In event-driven programming, the
sequence of operations for an application is determined by the user’s interaction with the
application’s interface (forms, menus, buttons,etc.). .

In an event -driven application , the code doesn’t follow a predetermined path rather it
executes different code sections in response to events . Events can be triggered by the user’s
actions ,by messages from the system or other applications, or even from the application itself.
The sequenice of these events determines the sequence in which the code executes , thus the
path through the application’s code or the sequence of execution differs each time the program
runs.; * ; A ; X
VistodaRasic 15 gn ek At cem /nyfw WW

Events comimon to most VB controls are described in the table below.

Event Occurs When ...

Change The user modifies text in a combo box or text box.

Click The user clicks the primary mouse button on an object.

DblClick The user double-clicks the primary mouse button on an object.

DragDrop The user drags an object to another locatiori.

DragOver The user drags an object over another control.

GotFocus An object receives focus.

KeyDowni The user presses a keyboard key whiie an object has focus.

KeyPress The user presses and releases a keyboard key while an object has focus.

KeyUp The user releases a keyboard key while an object has focus.

LostFocus An object loses focus.

MouseDown The user presses any mouse button while the mouse pointer is over an
object.

MouseMove The user moves the mouse pointer over an object.

MouseUp The user releases any mouse button while the mouse pointer is over an
object.

2.What are the different data types supported by Visual Basic ? How they can be
declared ? Also mention their uses

Visual Basic Data Types
Visual Basic classifies the data types in two major categories:-

1). Numeric Data Types and 2).Non-Numeric data types.
1. Numeric Data Types
Numeric data types are types of data that consist of numbers, which can be computed
mathematically with various standard operators such as add, minus, multiply, divide and more.
Examoles of numeric data types are examination marks, height, weight, the number of students in
a class, share values, price of goods, monthly bills, fees and others. In Visual Basic, numeric data
are divided into 7 types, depending on the range of values they can store. Calculations that only
involve round figures or data that does not need precision can use Integer or Long integer in the
computation. Programs that require high precision calculation need to use Single and Double
decision data types, they are also called floating point numbers. For currency calculation , you can
use the currency data types. Lastly, if even more precision is required to perform calculations that
involve a many decimal points, we can use the decimal data types. These data types summarized in
Table given below:-

Numeric Data Types

Type Storage Range of Values

Byte 1byte 0to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

-3.402823E+38 to -1.401298E-45 for negative values
1.401298E-45 to 3.402823E+38 for positive values.

-1.79769313486232e+308 to -4.94065645841247E-324 for negative values
4.94065645841247E-324 to 1.79769313486232e+308 for positive values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

: +/-79,228,162,514,264,337,593,543,950,335 if no decimal is use
Decimal 12bytes) 7 g578162514264337593543950335 (28 decimal places).

Single 4 bytes

Double 8 bytes

2. Non-numeric Data Types

Nonnumeric data types are data that cannot be manipulated mathematically using standard
arithmetic operators. The non-numeric data comprises text or string data types, the Date data
types, the Boolean data types that store only two values (true or false), Object data type and
Variant data type .They are summarized in Table given below:-

Non-Numeric Data Types

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters
String(variable length) Length + 10 bytes 0 to 2 billion characters

Date 8 bytes ; January 1, 100 to December 31, 9999
Boolean 2 bytes True or False

Object 4 bytes Any embedded object
Variant(numeric) 16 bytes Any value as large as Double
Variant(text) Length+22 bytes Same as variable-length string

3.Give difference between arrays and dynamic arrays. How they can be created in Visual Basic
? Give Syntax

Arrays :-

An array is a collection of values of the same data type. The values in an array are called array
elements. Array elements are accessed using a single name and an index number representing the
position of the element within the array.

Arrays are used in a database application to handle data for processing.

Declaring Arrays

Unlike simple variables, arrays must be declared with the Dim (or Public, or Private) statement
followed by the name of the array and the index of the last element in the array in
parentheses for example:

Dim Ages(19) As Integer

Ages is the name of an array that holds 20 values (the ages of the 20 employees), with indices
ranging from 0 to 19. Ages(0) is the first person “s age, Ages(1) the second person’s age, and so
on. All we have to do is remember who correspends to each age, but even this data can be
handled by another array. To do this, we declare another array of 19 elements as follows:

Dim Names(19) As String
and then assign values to the elements of both arrays:

Names(0)= "John"
Ages(0) =34
Names(1)= "Sam"
Ages(1) =38
Names(19)= "Hedric"
Ages (19) =45

vynamic Arravs

Sometimes we will not know how large an array to create. The earlier approach was to make it
large enough to hold the maximum number of data. This will result in on an average, most of the
array will be empty. To avoid this we can declare a dynamic array. The size of a dynamic array can
vary during the execution of the software program.

With a dynamic array, we can discard the data and return the resources it occupied to the system.

To create a dynamic array, declare it as usual with the Dim statement, Public or Private but don"t
specify its dimensions:

Dim DynArray As Integer

Later in the program, when we know how many elements we want to store in the array, use the
ReDim statement to redimension the array, this time to its actual size. In the following example,
UserCount is a user-entered value:

ReDim DynArray(UserCount)

The ReDim statement can appear only in a procedure. Unlike the Dim statement, ReDim is
executable, it forces the application to carry out an action at runtime. Dim statements aren’t

executable, and they can appear outside procedures.

A dynamic array also can be redimensioned to multiple dimensions. Declare it with the Dim
statement outside any procedure as follows

Dim Matrix() As Double

and then use the ReDim statement in a procedure to declare a three-dimensional array:

ReDim Matrix(9,9 , 9)

Note that the ReDim statement can’t change the type of the array that’s why the As clause is
missing from the ReDim statement. Moreover, subsequent ReDim statements can change the
bounds of the array Matrix but not the number of its dimensions. For example, we can’t use the

statement ReDim Matrix(99, 99) later in your code. Once an array has been redimensioned once, its
number of dimensions can 't change. In the preceding example, the Matrix array will remain three-

dimensional through the course of the application.

The ReDim statement can be issued only from within a procedure. In addition, the array to be
redimensioned must be visible from within the procedure that calls the ReDim statement.

Sr No. Arrays Dynamic Arrays
1 An array is a collection of values of the | Sometimes we will not know how large an
same data type. The values in an array | array to create. The earlier approach was
are called array elements. Array to make it large enough to hold the
elements are accessed using a single maximum number of data. This will result
name and an index number in on an average, most of the array will
representing the position of the be empty. To avoid this we can declare a
element within the array. dynamic array. The size of a dynamic
array can vary during the execution of the
software program.
With a dynamic array, we can discard the
data and return the resources it occupied
to the system.
2 The size of an array can’t vary during The size of a dynamic array can vary
the execution of the program. during the execution of the software
program
3 Arrays must be declared with the Dim Dynamic array is also declared with the

(or Public, or Private) statement
followed by the name of the array and
the index of the last element in the
array in parentheses for example:

Dim Ages(19) As Integer.

Dim statement, Public or Private but
don "t specify its dimensions:
Dim DynArray As Integer

Later in the program, when we know how
many elements we want to store in the
array, use the ReDim statement to
redimension the array, this time to its
actual size. In the following example,
UserCount is a user-entered value:

ReDim DynArray(UserCount)

5.Write a program with a good interface in visual Basic to print first 20 Fibonacci

numbers.

Private Sub Command1_Click()
Dim x, g, n, i, sum As Integer

n =20
x=0
y'=1
Print x
Print y
Fori=3Ton
sum =X +y
Print sum
x=y
y = sum
y = sum
Next i
End Sub
6. a) 1}4”%@, E[N Llid*' BGox a”"‘“’ (L’W\AD GZM
Sr No. List Box Combo Box
1. Occupies more space but shows more Occupies less space but shows only one
than one value. value for visibility .
2, We can select multiple items. Multiple select is not possible
3. we can use checkboxes with in the list | can't use checkboxes within combo boxes
box.
4.

b) Diffence between picture box and image box :-

RS

BackColor, FillColor, FillStyle, etc.

A Picture Box can act as a container , An image control can't.

An Image control has Stretch property, a Picture Box control does not.
Picture Box control has an AutoSize property, an Image control does not.
A Picture Box control is a container control, an Image control is not.

A Picture Box control also has a whole bunch of properties that an Image Control does not -

c) Diffence between Check Box and Option Button :-

%,
Option Button

It is an element of a form
It is used for selecting options

Checkbox

It is also an element of a form
It is also used for selecting options

It is a graphical user interface widget It is also a graphical user interface widget

Only one option can be selected
Example:Selecting of Gender

Cne or more options can be selected
Example:Selecting the games known

Select your Highest Educational qualification: Select the games you can play:

A vaessage bond b oot almbol but A haa
hen mecded o get l/'\tcﬂ"ﬁ.t,mﬁg-,n“’\(_ WaLH -
A ot box Cenhel ot

XN

dt@,jlw ook Afgfogarcs

s o the doom -

B.Sc 2 Hockey

M.Sc r Cricket
3 Baksket Ball

B.Tech

(d) Difference Between Pop Up and Dynamic Menu :-

Pop Wp Mo — U G floatiy wene thab u ditjelaged Non g
W o depended o the Womic bar .

?ﬂf’ up \/“L&MA e gleo talled W Momis bz,
He s dA'A}c'»b?ml on e B Py Wp Wigm W
YVoLse lullen clicited > =

Vol () Fumebias =+ Lot Asbing toq ‘
oR

o i e AR TN e
| W“q S‘b’W.HJ as g
& e o et 1y,
o iy Ne/ (gt)

\icual Lo forires

In Visual Basic, errors also called exceptions and they fall into one of the three categories: syntax
errors, run-time errors, and logical errors.

Syntax Errors

Syntax errors are those that appear while you write code. Visual Basic checks your code as you
type it in the Code Editor window and alerts you if you make a mistake, such as misspelling a
word or using a language element improperly. Syntax errors are the most common type of errors.
You can fix them easily in the coding environment as soon as they occur.

Run-Time Errors

Run-time errors are those that appear only after you compile and run your code. These involve
code that may appear to be correct in that it has no syntax errors, but that will not execute. For
example, you might correctly write a line of code to open a file. But if the file is corrupted, the
application cannot carry out the Open function, and it stops running. You can fix most run-time
errors by rewriting the faulty code, and then recompiling and rerunning it.

Logical Errors

Logical errors are those that appear once the application is in use. They are most often unwanted
or unexpected results in response to user actions. Logical errors are generally the hardest type to
fix, since it is not always clear where they originate.

Dim Statement: It Declares and allocates storage space for one or more variables.

e.g. Dim marks As Integer

Arrays

A variable is a name to which we can assign a single value.

An array variable is an ordered collection of variables of the same type to which we can
efficiently assign a list of values.

Creating an Array

In Visual Basic we first must declare or create an array before we try to store information in it.
The command for doing this is DIM.

DIM mark(20) as Double
This statement Creates an array called mark with elements 0 to 20 that stores 21 values of type
double.

DIM age(15) as integer

This statement Creates an array called age with elements 0 to 15 that stores 16 integers.

DIM name(10) as string

This statement creates an array called name with elements 0 to 10 that stores 11 strings.
Assigning Values to the elements in an Array

Mark(1) = 76, Stores the number 76 in the first element of the array called mark
Mark(3) = 87, Stores the number 87 in the third element of the array called mark

Displaying values in an array
txtOutput. Text = mark(1).toString

To assign 0 in every element in mark

mark(0) =0
mark(1) =0
mark(2) =0 ...
mark(20) =0
OR
forx=0to 20

age(x)=0
next x

The following two statements are equivalent. Each statement declares an array of
21 Integer elements. When you access the array, the index can vary from 0 through 20.

Dim totals(20) As Integer
Dim totals(0 To 20) As Integer

The following statement declares a two-dimensional array of type Double. The array has 4 rows
(3 + 1) of 6 columns (5 + 1) each. Note that an upper bound represents the highest possible value
for the index, not the length of the dimension. The length of the dimension is the upper bound

plus one.
Dim matrix2(3, 5) As Double

An array can have from 1 to 32 dimensions.

Numeric Functions
1. Val Function

This function is used as a converter function. It converts the numbers contained in a string to its
numeric equivalent.

Syntax:
Val(String)

Note: the string must be put in quotes

Working :-Val(“124566") produces the number 124566

Val(*125.0066)
will produce the number 125.0066

However, the Val function stops reading the string , when it encounters a character which has
NO NUMERIC EQUIVALENCE, which is for alphabets, symbols, commas, etc are not
recognized. But, Blanks and Tabs are simply removed and not counted at all.

so therefore we get something like this
Val (“4566 3442 5553 <)
gives the output 456634425553 | no tabs , spaces included.

Now, for input something like this it has another output
Val (“12534ABCD2345™)

gives output 12534 because when it reads “A” after four, it doesn’t recognize it as a number, and
the string is not read further, so even if there are numbers at the back of the string, they aren’t
added as they are never read.

2. Sgn Function
This function is used to determine the sign of a number.

Syntax:
Sgn(number)

the “number” should be a valid number or numeric expression

Following are the three cases for a sign of a number

If the number is

Positive (number > 0) then sign value returned is “1”
Negative (number < 0) then sign value returned is “-1”
Zero (number = 0) then sign value returned is “0”

example:
Dim N1, N2, N3 As Integer

N1 =34
N2=-29
N3=0

Print Sgn(N1)
Print Sgn(N2)
Print Sgn(N3)
the output is

!

-1

0

3. Int and Fix Functions ng %
Both these functions are used to remove the numbers left to the decimal point. but these
functions work differently.

the Fix() function simply removes (truncates) the fractional part.
num = Fix(134.2423)

// num is stored with the value 134

and the Int() function removes the fractional part, and rounds down to the nearest integer value
numl = Int(134.9423)

// numl is stored with the value 135

