
E-R modelling is termed as Entity – Relationship modelling. It is a graphical representation of

entities and their relationships to each other It defines the conceptual view of a database. It

works around real-world entities and the associations among them. At view level, the ER model

is considered a good option for designing databases.

The building blocks of an E-R Model are:

1. Entity

2. Attribute

3. Relationship

1. Entity: It is a basic object that the ER model represents and it is a thing in the physical world

with independent existence. The existence can be physical (car, house, employee, etc.) or

conceptual existence (company, university, job, etc.).

2. Attributes: They are the properties that describe an entity. For instance, an entity “Student”

can have attributes like “Name”, “Date of birth”, “Address”, etc. Attributes can be further

divided into various sub-categories:

 Composite vs. Simple attributes: Composite attributes can be further divided into

smaller sub-components, each having its own independent meaning. For example, an

attribute “address” can have individual components like “house number”, “locality

name”, etc. Simple attributes cannot be further divided.

 Single-valued vs. Multivalued attributes: Attributes having only one value for a

particular entity are known as single-valued attributes. Example: the attribute “age” for

a person can have only one value as a person cannot have more than one age value. On

the other hand, a multivalued attribute can take multiple values for a single entity.

Example: an entity “student” can have multiple “degrees”.

 Stored vs. derived attributes: When two or more attributes are related, often one is

dependent on the other. For instance, if the “date of birth” of a person becomes the

stored attribute, then the “age” of that person becomes the derived attribute.

If an entity has a unique identifier attribute, such that all the values of that attribute are distinct

for each individual entity in the entity set, then that attribute is known as the key attribute. For

Example: For Student entity, “Roll no.” is a key attribute. An entity which has a key attribute

of its own is known as a Strong entity.

Some entity types can have more than one key attribute. In case an entity type has no key, it is

known as the weak entity type. A weak entity type normally has a partial key, which is the

attribute that can uniquely identify weak entities that are related to the same owner entity, and

is represented in the model by a dotted line under the particular attribute.

Each attribute has a value set or domain of values, which provides the set of values that can

be assigned to that attribute for each individual entity in the entity set. For example, an entity

“employee” having the attribute “age” can only take values between 18 and 60, if retirement

age is 60.

3. Relationships: A relationship identifies how entities are related to each other and amongst

themselves.

TYPE/DEGREE OF RELATIONSHIPS:

1. Unary or recursive relationship: It is a relationship in which an entity is related to itself

or when both participants in the relationship are the same entity.

For example: Student is related to other student through “Classmate” relationship.

2. Binary relationship: A binary relationship exists when two entities participate and are

related to each other.

For example: Relationship between Teacher and Student entities.

3. Ternary Relationship: A ternary relationship exists when three entities participate in the

relationship.

For example: Relationship between Teacher, Student and Course entities.

4. N-ary Relationship: It is a relationship in which N-entities are related.

CARDINALITY: Cardinality is the number of relationship instances in which entities can

participate.

It may be a one to one (1:1), one to many (1: M), many to one (M: 1) or many to many

(M: N).

 ONE-TO-ONE (1:1): Relationship between Head and Department.

A Head manages one department.

Each department is managed by one Head.

 ONE-TO-MANY (1: M): Relationship between Department and Course.

A Department offers many Courses.

 MANY-TO-MANY (M:N) : Relationship between Teacher and Students.

A teacher teaches many students.

Each student is taught by many teachers

Weak Entity sets and Strong Entity sets and Identifying relationships

Entity types that do not have a key attribute of their own are called weak entity types. In contrast

the regular entities that do have a key attribute are called strong entity types.

The existence of a weak entity set depends on the existence of a strong entity set. Weak entity

set is represented by double-line rectangle.

Identifying relationships is the relationship between weak entity sets and strong entity sets. It

is represented by double-line diamond.

The discriminator or partial key of a weak entity set is the set of attributes that distinguishes

among all the entities of a weak entity set. The primary key of a weak entity set is formed by

the primary key of strong entity sets on which the weak entity set is existence dependent plus

the weak entity set’s discriminator.

E-R Modelling Notations

 Symbol Meaning

 Entity

 Attribute

 Relationship

 Derived Attribute

 Key attribute

 Composite attribute

 Multi valued attribute

 Weak entity

 Identifying Relationship

 M N Cardinality ratio M:N

 Total Participation of E2 in R

 E1
 R

R

 E2

 E1 R

R

 E2

Steps involves in developing an ER diagram:

Step 1: Specify the Assumptions.

Step 2: Identify the Entities involved.

Step 3 Identify attributes of all the entities and classify them accordingly.

Step 4: Identify the relationships among various entities.

Step 5: identify the cardinalities.

Step 6: Draw complete ER diagram

EER Model: The Enhanced entity–relationship (EER) model (or extended entity–

relationship model) in computer science is a high-level or conceptual data model incorporating

extensions to the original entity–relationship (ER) model, used in the design of databases.

Additional Concepts included in EER are explained below:

SUBCLASSES AND SUPERCLASSES

 An entity type may have additional meaningful subgroupings of its entities. Entity type

A is a subclass of an entity type B if and only if every A is necessarily a B.

 Subclass inherits all the attributes and relationship of its superclass entity called

attribute and relationship inheritance.

 A subclass may have its own attributes and relationships (called specific attributes and

relationships) along with the attributes and relationships inherited from the superclass.

 Example: EMPLOYEE may be further grouped into:

 SECRETARY, ENGINEER, TECHNICIAN (Based on the EMPLOYEE’s Job)

 SALARIED_EMPLOYEE, HOURLY_EMPLOYEE (Based on the EMPLOYEE’s

method of pay)

 Each of these subgroupings is a subset of EMPLOYEE entity and are called a

subclasses of EMPLOYEE

 EMPLOYEE is the superclass for each of these subclasses

 Superclass/subclass relationships:

 EMPLOYEE/SECRETARY

 EMPLOYEE/TECHNICIAN

 EMPLOYEE/MANAGER

 These are also called IS-A relationships (SECRETARY IS-A EMPLOYEE,

TECHNICIAN IS-A EMPLOYEE…etc.).

https://en.wikipedia.org/wiki/Conceptual_schema
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Database

Attribute Inheritance in Superclass / Subclass Relationships

 An entity that is member of a subclass inherits

 All attributes of the entity as a member of the superclass

 All relationships of the entity as a member of the superclass

In the above example, SECRETARY (as well as TECHNICIAN and ENGINEER) inherit the

attributes Name, SSN, …, from EMPLOYEE.

Specialization

Specialization is the abstracting process of introducing new characteristics to an existing class

of objects to create one or more new classes of objects.

In simple terms, when a higher level entity is broken down into some lower level entities then

we call this process specialization.

Example:

Types of Specialization:

1. Predicate Defined or Condition defined specialization:

In a predicate-defined (or condition-defined) subclass, the subclass membership of an

entity can be determined from its attribute values in the superclass.

e.g.

2. Attribute Defined specialization: A specialization having single common defining

attribute and is known as Attribute defined specialization. E.g. {Current Student, Ex

Student} specialization of Student entity based on type of student as follows.

3. User Defined specialization:

A specialization that is neither predicate defined nor attribute defined and solely based

on users decision is user defined specialization.

GENERALISATION

Generalization is the reverse of the specialization process.

It is a bottom up approach where several classes with common features are generalized into a

superclass. Example: CAR, TRUCK generalized into VEHICLE

Both CAR, TRUCK become subclasses of the superclass VEHICLE.

We can view {CAR, TRUCK} as a specialization of VEHICLE

 Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK.

 Diagrammatic notation are sometimes used to distinguish between generalization and

specialization. Arrow pointing to the generalized superclass represents a generalization.

Arrows pointing to the specialized subclasses represent a specialization. We do not use this

notation because it is often subjective as to which process is more appropriate for a particular

situation.

Specialization and Generalization Constraints:

1. Disjointness and overlapping constraint

Disjointness constraint specify that the subclasses of super class are disjoint i.e. an

entity which belongs to the super class belongs to at most one subclass of the

specialization. Otherwise, it is an overlapping constraint.

Represented by:

Disjointness --

Overlapping- -

2. Completeness(Total / Partial) constraint

A specialization is total in nature if an entity belonging to the super class belongs to

at least one of the subclass.

Represented by-

If we take some entity of super class and they do not belong to any of the subclasses

then this is partial specialization.

Represented by-

Specialization hierarchy:

Specialization Hierarchy has the constraint that every subclass participates as a subclass in

only one class/subclass relationship, i.e. that each subclass has only one parent. This results in

a tree structure. There is single inheritance.

Specialization lattice:

Specialization Lattice has the constraint that a subclass can be a subclass of more than one

class/subclass relationship i.e. a subclass has more than one superclass, and such a subclass is

called a shared subclass. This leads to multiple inheritance.

Categories (UNION TYPES)

So far we have seen that all the superclass/ subclass relationships have a single superclass.

But in some cases, we have a subclass participating in multiple superclass/subclass

relationships with more than one superclass. Such a subclass is called a category or UNION

TYPE.

Example: In a Database for vehicle registration, vehicle owner can be a person, a bank (holding

a lien on a vehicle) or a company.

So in this example, a category (UNION Type) called OWNER is created to represent a subset

of the union of the three Superclasses: COMPANY, BANK & PERSON.

DATABASE ANOMALIES: Database anomalies refer to errors and inconsistencies in the

database. Anomalies creates problems while performing the operations like updation, insertion

and deletion. The anomalies can be eliminated by redefining a relation into two or more

relations.

There are three types of anomalies:

1) Update Anomaly

2) Insert anomaly

3) Delete Anomaly

Update anomaly: An update anomaly is a data inconsistency that results from data redundancy

and a partial update. If in table 1, the address of student with student ID 101 is changed, then

it has to be changed in both rows: 1 and 5, otherwise update anomaly occurs.

Insert anomaly: Inability to add data to the database due to absence of other data. Suppose in

the table 1, a new student is to be added who is yet to get admission is some department and

has not been assigned the department so far. In such cases, insert anomaly occurs.

Delete anomaly: Unintended loss of data due to deletion of other data. If we try to delete

department “Statistics” from the database, then details of student “S2” will also get deleted

even though we do want to keep student details.

Student ID

Student name

Address

Department

101 S1 Rohini Operational Research

102 S2 Dwarka Statistics

103 S3 Narela Computer Science

104 S4 Palam Mathematics

101 S1 Rohini Operational Research

NORMALIZATION:

Normalization is a systematic approach of decomposing tables to eliminate data redundancy

and undesirable characteristics like Insertion, Update and Deletion Anamolies. It is a multi-

step process that puts data into tabular form by removing duplicated data from the relation

tables.

Main purpose of normalization:

 Eliminating redundant (useless) data.

 Ensuring data dependencies make sense i.e. data is logically stored.

 Types of normalisation:

 First Normal Form

 Second Normal Form

 Third Normal Form

 Boyce-Codd Normal Form

FIRST NORMAL FORM (1NF): A table is said to be in 1NF, if it satisfies the following

properties:

 An attribute (column) of a table cannot hold multiple values.

 Any row must not have a column in which more than one value is saved, like

separated with commas.

Example: Consider the following table:

Student_id Student_name Student_address Student_Mobile No.

101 S1 New Delhi 9891989191

102 S2 Mumbai
 9911121212,

 9999112222

103 S3 Kolkata 9998881212

104 S4 Bangalore

 9911000123,

9871987142

Two students (S2 & S4) are having two mobile numbers as seen in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single)

values”, the Student_Mobile No. values for students S2 & S4 violate that rule.

To make the table compatible with 1NF, we modify the above table as follows:

Student_id Student_name Student_address Student_Mobile No.

101 S1 New Delhi 9891989191

102 S2 Mumbai 9911121212

102 S2 Mumbai 9999112222

103 S3 Kolkata 9998881212

104 S4 Bangalore 9911000123

104 S4 Bangalore 9871987142

This table satisfies the following:

 It is in First Normal Form (1NF).

 It contains redundant data.

 There is no column which uniquely identifies each and every row.

 Primary key = {Student_id, Student_Mobile No.}

SECOND NORMAL FORM (2NF): A table is said to be in 2NF, if it satisfies the following

properties:

 Table should be in first normal form.

 All non-key or non-prime attributes are fully functional dependent on the primary key.

Note: An attribute, which is a part of the primary key, is known as a prime attribute. An

attribute, which is not a part of the primary key, is said to be a non-prime attribute.

Example:

Student_id Subject Age

101 Mathematical Programming 23

101 Inventory Management 23

102 Mathematical Programming 22

 Primary Key: {Student_id, Subject}. Non-prime attribute: Age.

 The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF

because non-prime attribute age is dependent on Student_id alone which is a proper

subset of Primary key. This violates the rule for 2NF.

 To make the table compatible with 2NF, we can break it in two tables as follows:

Student_details table:

Student_id Age

101 23

102 22

Student_Subject table:

Student_id Subject

101 Mathematical Programming

101 Inventory Management

102 Mathematical Programming

THIRD NORMAL FORM (3NF): A table is said to be in 3NF, if it satisfies the following

properties:

 Table is in second normal form.

 Every non-prime attribute of table must be dependent on primary key and there should

be no transitive dependency.

Example:

Student_id City Pin Code

101 New Delhi 110001

102 Faridabad 121001

In this table, Student_id is the Primary key, and therefore non-prime attribute “City” is

dependent on “Student_id” whereas other non-prime attribute “Pin Code” can be determined

by “City” alone. Thus, there is transitive dependency in this table. Now, to make the table

compatible with 3NF, we need to break it into two new tables as follows:

Student_Detail Table:

Student_id Pin Code

101 110001

102 121001

Address Table:

City Pin Code

New Delhi 110001

Faridabad 121001

BOYCE AND CODD NORMAL FORM (BCNF): A table is said to be in BCNF, if it

satisfies the following properties:

 R must be in 3rd Normal Form

 For each functional dependency (X -> Y), X should be a super Key.

Example:

Student_id Student_name Course_name Course_code

101 S1 Mathematical Programming C001

101 S1 Inventory Management C002

102 S2 Mathematical Programming C001

 Functional dependencies in the table above:

Student_id -> Student_name

Course_name -> Course_code

 Primary key: {Student_id, Course_code}

 The table is not in BCNF as neither Student_id nor Course_code alone is a key.

To make this table compatible with BCNF, we can break the table in the following manner:

Table 1:

Student_id Student_name

101 S1

102 S2

Table 2:

Course_name Course_code

Mathematical Programming C001

Inventory Management C002

 Table 3:

Student_id Course_code

101 C001

101 C002

102 C001

Primary Keys:

Table 1: Student_id

Table 2: Course_code

Table 3: {Student_id, Course_code}

