
Normalization  

Normalization is a process of organizing the data in database to avoid data redundancy, 
insertion anomaly, update anomaly & deletion anomaly. Let’s discuss about anomalies first 
then we will discuss normal forms with examples. 

Anomalies in DBMS 

There are three types of anomalies that occur when the database is not normalized. These are 
– Insertion, update and deletion anomaly. Let’s take an example to understand this. 

Example: Suppose a manufacturing company stores the employee details in a table named 
employee that has four attributes: emp_id for storing employee’s id, emp_name for storing 
employee’s name, emp_address for storing employee’s address and emp_dept for storing the 
department details in which the employee works. At some point of time the table looks like 
this: 

emp_idemp_nameemp_addressemp_dept 

101 Rick Delhi D001 

101 Rick Delhi D002 

123 Maggie Agra D890 

166 Glenn Chennai D900 

166 Glenn Chennai D004 

The above table is not normalized. We will see the problems that we face when a table is not 
normalized. 

Update anomaly: In the above table we have two rows for employee Rick as he belongs to 
two departments of the company. If we want to update the address of Rick then we have to 
update the same in two rows or the data will become inconsistent. If somehow, the correct 
address gets updated in one department but not in other then as per the database, Rick would 
be having two different addresses, which is not correct and would lead to inconsistent data. 

Insert anomaly: Suppose a new employee joins the company, who is under training and 
currently not assigned to any department then we would not be able to insert the data into the 
table if emp_dept field doesn’t allow nulls. 

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then 
deleting the rows that are having emp_dept as D890 would also delete the information of 
employee Maggie since she is assigned only to this department. 

To overcome these anomalies, we need to normalize the data. In the next section we will 
discuss about normalization. 



Trivial Functional Dependency (FD) 

Trivial − If a functional dependency FD, X → Y holds, where Y is a subset of X, then it is 
called a trivial FD. Trivial FDs always hold. 

Non-trivial − If an FD, X → Y holds, where Y is not a subset of X, then it is called a non-
trivial FD. 

Completely non-trivial − If an FD, X → Y holds, where x intersect Y = Φ, it is said to be a 
completely non-trivial FD. 
 

Axioms 

If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of all 

functional dependencies logically implied by F.  

Reflexive rule − If alpha is a set of attributes and beta is subset of alpha, then alpha holds 

beta. 

Augmentation rule − If a → b holds and y is attribute set, then ay → by also holds. That is 

adding attributes in dependencies, does not change the basic dependencies. 

Transitivity rule − Same as transitive rule in algebra, if a → b holds and b → c holds, then a 

→ c also holds. a → b is called as a functionally that determines b. 

 

Normalization of Database 

Database Normalization is a technique of organizing the data in the database. Normalization 
is a systematic approach of decomposing tables to eliminate data redundancy(repetition) and 
undesirable characteristics like Insertion, Update and Deletion Anomalies. It is a multi-step 
process that puts data into tabular form, removing duplicated data from the relation tables. 

Normalization is used for mainly two purposes, 
Eliminating redundant(useless) data. 
Ensuring data dependencies make sense i.e. data is logically stored 
 
 
Normalization: a formal method that identifies relations based on their primary key and the 
functional dependencies among their attributes. 
Functional dependencies is a kind of Constraint between attributes. 
 
Functional dependency: Describes the relationship between attributes in a relation. If A and 
B are attributes of a relation R, B is functionally dependent on A (den. A → B), if each value 
of A in R is associated with exactly one value of B in R. 
 B is functionally dependent on A. i.e. A B 



 
Then attribute or set of attributes on the left-hand side of the arrow is called determinant. 
 
Identify the candidate key for a relation: recognise the attribute (group of attributes) that 
uniquely identifies each row in a relation. All of the attributes that are not part of the primary 
key (non-primary key attributes) should be functionally dependent on the key. 
 

Full functional dependency: If A and B are attributes of a relation, B is fully functionally 
dependent on A if B is functionally dependent on A, but not any proper subset of A.  

A → B is partially dependent if there is some attribute that can be removed from A and the 
dependency still holds.( https://www.studytonight.com/dbms/second-normal-form.php link to 
understand partial dependency) 

Transitive dependency: A condition where A, B and C are attributes of a relation such that if 
A → B and B → C, then C is transitively dependent on A via B (provided that A is not 
functionally dependent on B or C).( https://www.studytonight.com/dbms/third-normal-form.php 
link to understand transitive dependency) 

 

Closure Method- it is useful in finding the candidate key of a given relation with its functional 
dependency. 

Let R(A,B,C,D) be a relation having attributes A,B,C and D wit the following functional 
dependency {AB, BC, CD}  

Then closure of A will be denoted by A+ which means the set of attributes that can be 
determined by attribute A.  

Since A determines itself, A determines B, B determines C implies A determines C (transitive 
rule) similarly A determines D (through transitivity) 

Hence, A+=A,B,C,D  

Since A can determine all the attributes of the given relation therefore A is a candidate key. 

B+=B,C,D , B cannot determines A hence B is not a candidate Key. 

Similarly C+=C, D and D+=D neither C nor d is a candidate key. 

So only A is the candidate key in the above example therefore a is prime attribute and B,C and 
D are non prime attribute 

 

Example 2. R( A,B,C,d) FD { AB,BC,CD, DA} 

Then A+=A,B,C,D  

B+= B,C,D,A  

C+= C,D, A,B  

D+= D, A,B,C  



Prime attribute={A,B,C,D} 

Non prime attribute={null} 

 

Example #: R(A,B,C,D,E) and FD  {AB, BCD, EC, DA} 

Since attribute E does not exist at RHS of any FD hence E must be a part of candidate as E can 
be determines by itself only. First we check for the closure of E 

E+=E,C     Hence E is not a candidate key. 

AE+=A,E,B,C,D  (A and E determines themselves means A and E , a determines B as AB 
and EC means e determines C then BC together determines D as BCD)  

Therefore, AE is a candidate key as its closure contains all the existing attributes of the given 
relation. Now we check for the BE+, CE+, DE+ 

BE+=B,E,C,D,A, BE is a candidate key 

CE+=C,E  CE is not a candidate key 

DE+=D,E,A,C,A DE is a candidate key     

Therefore prime attributes ={A,B,D,E} 

Non prime attribute = {C} 

 

 

NORMALIZATION 

Here are the most commonly used normal forms: 

 First normal form(1NF) 

 Second normal form(2NF) 

 Third normal form(3NF) 

 Boyce & Codd normal form (BCNF) 

 

First normal form (1NF) 

First Normal Form is defined in the definition of relations tables itself. This rule defines that 
all the attributes in a relation must have atomic domains. The values in an atomic domain are 
indivisible units.  

Example: Suppose a company wants to store the names and contact details of its employees. 
It creates a table that looks like this: 

emp_idemp_nameemp_addressemp_mobile



101 Herschel New Delhi 8912312390

102 Jon Kanpur 
8812121212
9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 
9990000123
8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in 
the same field as you can see in the table above. 

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single) 
values”, the emp_mobile values for employees Jon & Lester violates that rule. 

To make the table complies with 1NF we should have the data like this: 

emp_idemp_nameemp_addressemp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

 

 

Second Normal Form Before we learn about the second normal form, we need to understand 
the following –  

Prime attribute − An attribute, which is a part of the prime-key, is known as a prime attribute.  

Non-prime attribute − An attribute, which is not a part of the prime-key, is said to be a non-
prime attribute. If we follow second normal form, then every non-prime attribute should be 
fully functionally dependent on prime key attribute. That is, if X → A holds, then there should 
not be any proper subset Y of X, for which Y → A also holds true. 

 

Second normal form (2NF) 

A table is said to be in 2NF if both the following conditions hold: 

 Table is in 1NF (First normal form) 

 There should be no partial dependency OR no non-prime attribute is dependent on the 
proper subset of any candidate key of table. 



How to check for Partial Dependency? 

LHS should be proper subset of Candidate Key and RHS should be a non -prime 
attribute.  

 

An attribute that is not part of any candidate key is known as non-prime attribute. 

Example: Suppose a school wants to store the data of teachers and the subjects they teach. 
They create a table that looks like this: Since a teacher can teach more than one subjects, the 
table can have multiple rows for a same teacher. 

teacher_idSubject teacher_age

111 Maths 38 

111 Physics 38 

222 Biology 38 

333 Physics 40 

333 Chemistry40 

 

Candidate Keys: {teacher_id, subject} 

Non prime attribute: teacher_age 

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because 
non - prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of 
candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is 
dependent on the proper subset of any candidate key of the table”. 

To make the table complies with 2NF we can break it in two tables like this: 
teacher_details table: 

teacher_id teacher_age 

111 38 

222 38 

333 40 

teacher_subject table: 

teacher_idsubject 

111 Maths 

111 Physics 



222 Biology 

333 Physics 

333 Chemistry

Now the tables comply with Second normal form (2NF). 

 

Example @:  

R (A,B,C,D,E,F)  FD {CF,EA, ECD,AB} 

EC+=ECDAFB 

Prime attribute {E,C} 

Non prime attribute{A,B,D,F} 

All attributes are atomic (trivially) hence relation is in 1NF 

Now check for partial dependency for each FD 

CF, C is a proper subset of CK and LHS attribute F is a non-prime attribute hece there exist 
PD. 

EA, similarly it is a partial dependence 

 

Third Normal form (3NF) 

A table design is said to be in 3NF if both the following conditions hold: 

 Table must be in 2NF 

 Transitive functional dependency of non-prime attribute on any super key should be 
removed. 

An attribute that is not part of any candidate key is known as non-prime attribute. 

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each 
functional dependency X-> Y at least one of the following conditions hold: 

 X is a super key of table 

 Y is a prime attribute of table 

An attribute that is a part of one of the candidate keys is known as prime attribute. 

Example: Suppose a company wants to store the complete address of each employee, they 
create a table named employee_details that looks like this: 

emp_idemp_nameemp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh 



1002 Ajeet 222008 TN Chennai M-City 

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan 

1201 Steve 222999 MP Gwalior Ratan 

  

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on 

Candidate Keys: {emp_id} 

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any 
candidate keys. 

 

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent 
on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively 
dependent on super key (emp_id). This violates the rule of 3NF. 

To make this table complies with 3NF we have to break the table into two tables to remove the 
transitive dependency: 

employee table: 

emp_idemp_nameemp_zip

1001 John 282005 

1002 Ajeet 222008 

1006 Lora 282007 

1101 Lilly 292008 

1201 Steve 222999 

employee_zip table: 

emp_zipemp_state emp_city emp_district

282005 UP Agra Dayal Bagh 

222008 TN Chennai M-City 

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan 

222999 MP Gwalior Ratan 

 



Boyce Codd normal form (BCNF) 

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 
3NF. A table complies with BCNF if it is in 3NF and for every functional dependency X->Y, 
X should be the super key of the table. 

Example: Suppose there is a company wherein employees work in more than one 
department. They store the data like this: 

emp_idemp_nationalityemp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200 

1001 Austrian Stores D001 250 

1002 American design and technical support D134 100 

1002 American Purchasing department D134 600 

 

Functional dependencies in the table above: 

emp_id -> emp_nationality 

emp_dept -> {dept_type, dept_no_of_emp} 

Candidate key: {emp_id, emp_dept} 

The table is not in BCNF as neither emp_id nor emp_dept alone are keys. 

To make the table comply with BCNF we can break the table in three tables like this: 
emp_nationality table: 

emp_idemp_nationality

1001 Austrian 

1002 American 

emp_dept table: 

emp_dept dept_type dept_no_of_emp

Production and planning D001 200 

Stores D001 250 

design and technical support D134 100 

Purchasing department D134 600 

emp_dept_mapping table: 



emp_idemp_dept 

1001 Production and planning 

1001 Stores 

1002 design and technical support

1002 Purchasing department 

Functional dependencies: 

emp_id -> emp_nationality 

emp_dept -> {dept_type, dept_no_of_emp} 

 

Candidate keys: 

For first table: emp_id 

For second table: emp_dept 

For third table: {emp_id, emp_dept} 

This is now in BCNF as in both the functional dependencies left side part is a key. 

 

 

 

 

 

 

 


