MASTER OF COMPUTER APPLICATIONS
3-YEAR FULL-TIME PROGRAMME

RULES, REGULATIONS AND COURSE CONTENTS

DEPARTMENT OF COMPUTER SCIENCE
FACULTY OF MATHEMATICAL SCIENCES
UNIVERSITY OF DELHI
DELHI-110007
2009
Check List of New Course Evaluation for AC Consideration

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Parameters</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Affiliation</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Programme Structure</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Codification of Papers</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Scheme of Examinations</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pass percentage</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Promotion Criteria</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Division Criteria</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Qualifying Papers</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Span Period</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Attendance Requirements</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Course Content for each papers</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>List of Readings</td>
<td></td>
</tr>
</tbody>
</table>
MASTER OF COMPUTER APPLICATIONS
3-YEAR FULL-TIME PROGRAMME

1. AFFILIATION

The proposed programme shall be governed by the Department of Computer Science, Faculty of Mathematical Sciences, University of Delhi, Delhi-110007.

2. PROGRAMME STRUCTURE

The Master of Computer Application Programme is divided into three parts as under. Each part will consist of two semesters to be known as Semester-I and Semester-II.

<table>
<thead>
<tr>
<th>Part-I</th>
<th>First Year</th>
<th>Semester-I</th>
<th>Semester-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-II</td>
<td>Second Year</td>
<td>Semester-III</td>
<td>Semester-IV</td>
</tr>
<tr>
<td>Part-III</td>
<td>Third Year</td>
<td>Semester-V</td>
<td>Semester-VI</td>
</tr>
</tbody>
</table>

3. CODIFICATION OF PAPERS

The schedule of papers prescribed for various semesters shall be as follows:

Part-I Semester I

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>L - T - P*</th>
<th>Credits</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 101</td>
<td>Object Oriented Programming</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 102</td>
<td>Systems Programming</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 103</td>
<td>Statistical Techniques</td>
<td>3 - 1 - 0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 104</td>
<td>Computer Systems Architecture and Lab.</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>EL1</td>
<td>One elective out of the following</td>
<td>3 - 1 - 0/ 4/5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i) MCA 105 (a) - Economics</td>
<td>** ***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii) MCA 105 (b) - Organizational Behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii) Outside Department Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(preferably Department of Mathematics,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Statistics and Operational Research)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCA 106#</td>
<td>Technical Communication</td>
<td>0 - 0 - 0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Qualifying Paper

Part-I Semester II

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>L - T - P*</th>
<th>Credits</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 201</td>
<td>Data Structures and File Processing</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 202</td>
<td>Discrete Mathematics</td>
<td>3 - 1 - 0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 203</td>
<td>Computer Graphics</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 204</td>
<td>Data Communication and Computer Networks</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>
EL2 One elective out of the following
i) MCA 205 – Fundamentals of Accounting and Finance
ii) Outside Department Elective (preferably Department of Mathematics, Statistics and Operational Research)

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>L – T – P*</th>
<th>Credits</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 301</td>
<td>Design and Analysis of Algorithms</td>
<td>3 - 1 - 0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 302</td>
<td>Software Engineering</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 303</td>
<td>Database Systems</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 304</td>
<td>Automata Theory</td>
<td>3 - 1 - 0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 305</td>
<td>Operating Systems</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Part-II Semester III

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>L – T – P*</th>
<th>Credits</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 401</td>
<td>Compiler Design</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 402</td>
<td>Information Security</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 403</td>
<td>Network Programming</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>EL3</td>
<td>Elective within the Department</td>
<td>* * *</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>EL4</td>
<td>Elective within the Department</td>
<td>* * *</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Students shall register for the electives amongst those offered by the Department from time to time, out of the following list:

List of Department Electives for Part-II Semester IV

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>L – T – P*</th>
<th>Credits</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 404</td>
<td>Data Base Applications</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 405</td>
<td>Advanced Operating Systems</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 406</td>
<td>Electronic Commerce</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 407</td>
<td>Numerical Computing</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 408</td>
<td>Computational Linguistics</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Part-III Semester V

Students shall register for at least 20 credits amongst those electives offered by the Department from time to time out of the following list:

List of Electives for Part-III Semester V

<table>
<thead>
<tr>
<th>Course No.</th>
<th>Title</th>
<th>L – T – P*</th>
<th>Credits</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCA 501</td>
<td>Modeling & Simulation</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 502</td>
<td>Visual Programming</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 503</td>
<td>Data Mining</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 504</td>
<td>Computational Intelligence</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 505</td>
<td>Artificial Intelligence</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 506</td>
<td>Digital Image Processing & Multimedia</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 507</td>
<td>Neural Networks</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>L - T - P</td>
<td>Crs</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>MCA 508</td>
<td>Combinatorial Optimization</td>
<td>3 - 1 - 0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 509</td>
<td>Software Quality Assurance & Testing</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 510</td>
<td>Machine Learning</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 511</td>
<td>Embedded Systems</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 512</td>
<td>Cryptography</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 513</td>
<td>Programming Paradigms</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 514</td>
<td>Database Systems and Implementation</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 515</td>
<td>Human Resource Management</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 516</td>
<td>XML and Databases</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>MCA 517</td>
<td>Satellite and Mobile Communication Networks</td>
<td>3 - 0 - 2</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

* L – T – P : Lectures - Tutorials - Practical
*** As per the elective offered by the concerned Department.

Part-III Semester VI

MCA 601 Project – 20 Credits

4. **SCHEME OF EXAMINATIONS**

 (i) English shall be the medium of instruction and examination.

 (ii) Examination shall be conducted at the end of each semester as per the academic calendar notified by the University of Delhi.

 (iii) The scheme of evaluation shall be as follows:

 Performance of the students will be evaluated based on a comprehensive system of continuous evaluation. For each course, there shall be two minor tests, assignments/practical & laboratory work and an end-semester examination: (Minor Test I, Minor Test II, Assignments/practical & laboratory work - 50% weightage; End-semester examination - 50% weightage). The implementation of the evaluation process would be monitored by a Committee to be constituted by the Department at the beginning of each academic year. For each course, the duration of written examination for end semester examination paper shall be two hours.

As regards project work (Paper MCA601) the scheme of evaluation shall be as follows:

 The project in sixth semester shall carry 500 marks distributed as follows:

 (a) Mid-semester evaluation 30% weightage

 (b) End-semester evaluation

 (i) Dissertation 30% weightage

 (ii) Viva-voce 40% weightage

End semester evaluation will be carried out by internal and external examiners. Each student shall carry out the project in the Department/Organization/Institution as approved by the Department under the supervision of a teacher assigned by the Department. When a student is assigned to an Organization/Institution for project work, the Department shall also appoint a supervisor from within the Organization/Institution.
Examination for courses shall be conducted only in the respective odd and even semesters as per the Scheme of Examinations. Regular as well as Ex-Students shall be permitted to appear/re-appear/improve in courses of odd semesters only at the end of odd semesters and courses of even semesters only at the end of even semesters.

5. **PASS PERCENTAGE**

In order to pass a course, a student must secure at least 40% marks in the end semester examinations and 40% marks in the internal assessment. Minimum marks for passing the examination in each semester shall be 45% in aggregate of a semester.

6. **PROMOTION CRITERIA**

SEMESTER TO SEMESTER: Students shall be required to fulfill the Part to Part Promotion Criteria. Within the same Part, students shall be allowed to be promoted from a Semester to the next Semester, provided she/he has passed at least half of the courses of the current semester.

PART TO PART:

I to II: Admission to Part-II of the Programme shall be open to only those students who have successfully passed at least 75% papers out of papers offered for the Part-I courses comprising of Semester-I and Semester-II taken together. However, he/she will have to clear the remaining papers while studying in Part-II of the Programme.

II to III: Admission to Part-III of the Programme shall be open to only those students who have successfully passed all the courses of Part-I (including aggregate marks requirements of 45%) and at least 50% papers out of papers offered for the Part-II courses comprising of Semester-III and Semester-IV taken together. However, he/she will have to clear the remaining papers while studying in Part-III of the Programme.

7. **DIVISION CRITERIA**

Successful candidates will be classified on the basis of the combined results of Part-I, Part-II and Part-III examinations as follows:

(i) First Division

60% or more marks in the aggregate

(ii) Second Division

50% or more marks but less than 60% marks in the aggregate

(iii) Pass

All others

8. **QUALIFYING PAPERS**

MCA 106

9. **SPAN PERIOD**
No student shall be admitted as a candidate for the examination for any of the Parts/Semesters after the lapse of five years from the date of admission to the Part-I/Semester I of the MCA.

10. ATTENDANCE REQUIREMENT

No student shall be considered to have pursued a regular course of study unless he/she is certified by the Head of the Department of Computer Science, University of Delhi, to have attended 75% of the total number of lectures, tutorials and seminars conducted in each semester, during his/her course of study. Provided that he/she fulfils other conditions the Head, Department of Computer Science may permit a student to the next semester who falls short of the required percentage of attendance by not more than 10 per cent of the lectures, tutorials and seminars conducted during the semester.

11. COURSE CONTENT FOR EACH PAPER

Part I Semester I

MCA 101: OBJECT ORIENTED PROGRAMMING

Programming Concepts: Algorithm and its characteristics, pseudo code / flowchart, program, identifiers, variables, constants, primitive data types, expressions, structured data types, arrays, compilers & interpreters

Statements: Assignment statement, if then else statements, switch statement, looping statements- while, do while, for, break, continue, input/output statements, functions/procedures

Object Oriented Concepts: Abstraction, encapsulation, objects, classes, methods, constructors, inheritance, polymorphism, static and dynamic binding, overloading,

Program Development: Object oriented analysis, design, unit testing & debugging, system testing & integration, maintenance.

Readings

4. Richard Johnson, An Introduction to Java Programming and Object-Oriented Application Development, Thomson Learning, 2006
8. J.A. Slack, Programming and Problem Solving with Java, Thomson Learning, 1999
MCA 102: SYSTEMS PROGRAMMING

Assembly Language Programming: Data representation, Instruction formats, addressing techniques, Flow control, Segments – Data Segment, Code Segment, Stack Segment, Procedures, Input/Output, Interrupts and Program development in 8086.

Assembler: macro processor, macros, calls, parameters, expansion, design of two-pass assembler.

Loaders and Linkers: Loading schemes, design of absolute and direct linking loaders.

Readings

MCA 103: STATISTICAL TECHNIQUES

Probability: Basic concepts & definitions (Classical & Axiomatic definition), random variable, probability density function, probability mass function, distribution function and their properties, mathematical expectation, conditional expectation, moment generating function, Characteristic Function, Chebyshev’s inequality.

Various discrete and continuous probability distributions: Uniform (continuous and discrete), Binomial, Negative Binomial, Poisson, Exponential, Erlang, Gamma, Normal, χ^2, t-distribution and F-distribution, Bivariate normal distribution (Marginal and Conditional distributions), weak Law of Large Numbers, Central Limit Theorem. Simple random sampling with and without replacement, Random number generation using inverse transformation technique (exponential distribution, gamma distribution)

Statistical Testing and Estimation Techniques: Properties of good estimator- unbiasedness, consistency, sufficiency, completeness, efficiency; Minimum variance unbiased estimators, Cramer Rao Inequality, Method of Maximum likelihood, method of Moments, Confidence Intervals for mean, variance and proportions. Large sample tests for mean and proportion, χ^2 test for goodness of fit, Tests based on t and F-distributions.

Correlation and Regression: Least square method for curve fitting, multiple regression (three variables only), Partial and multiple Correlation (for three variables only).

Readings
MCA 104 COMPUTER SYSTEMS ARCHITECTURE and LAB

Basic Building Blocks: Boolean logic and Boolean algebra, tri-state logic; flip-flops, counters, shift registers, adders, subtractor, encoders, decoders, multiplexors, demultiplexors

Register Transfer and Micro Operations: Bus and memory transfers, arithmetic, logic shift micro operations; basic computer organization: common bus system, instruction formats, instruction cycle, interrupt cycle, input/output configuration, CPU organization, register organization, stack organization, micro programmed control unit RISC architecture; microprocessor architecture.

Memory Unit: Primary memory, secondary memory, associative memory, sequential access, direct access storage devices.

Input-Output Architecture: Input/Output devices; data transfer schemes - programmed I/O and DMA transfer; data transfer schemes for microprocessors.

Readings

MCA 105 (a) PRINCIPLES OF ECONOMICS

Demand and Supply: Concept of demand, determinants of individual and market demand functions, elasticity of demand – price, income and cross elasticities, concept of supply, determinants of individual and market supply functions, elasticity of supply, Equilibrium price.

Production: Production function in short run – law of variable proportion, production function in the long run – isoquants, isocosts, ridge lines, returns to scale; producer’s equilibrium - optimum combination of inputs to (i) maximize output - given cost and (ii) minimize cost - given output (least - cost combination of inputs).

Market Structure: Price and output determination under perfect competition and monopoly. Comparison between perfect competition and monopoly with respect to Efficiency.

Factor Pricing - Demand and supply of factors of production, pricing of a single variable factor under perfect competition and monopoly; modern theory of rent, quasi-rent.

Macroeconomics: Meaning of macroeconomics, Keynesian theory of determination of income and employment in the three sector economy, multiplier analysis, IS-LM model of equilibrium income and interest rate. Meaning and objectives of fiscal and monetary policies.

Readings

3. Pindyck, Rubinfeld and Mehta, Microeconomics (1st Indian reprint), Pearson Education, 2005.

MCA 105 (b) ORGANIZATIONAL BEHAVIOUR

Motivation: Importance of motivation at work, approaches to motivation, content theories, process theories, motivation and its effects, McGregor theory X and Y, Maslow’s need hierarchy, Herzberg’s two factor theory, Vroom expectancy theory, OB modification.

Power and Politics: Definition and nature of Power, Types of Power, Contingencies of Power, Organizational Politics, Where does it occur, Types of political activity, Political strategies for power acquisition in modern organization, Coping with organizational politics. Empowerment. Organizational politics and its effects, Organizational politics and ethics.

Communication and feedback: Transactional analysis, Johari window, job analysis and job design: issues, techniques and methodology.

Leadership: Concept and style, Fiedler’s contingency mode, path-goal theory, leadership effectiveness.
Readings

MCA 106 TECHNICAL COMMUNICATION

Language and communication: speech and writing, functions and features of linguistic communication

Interpersonal and business communication: message structure and message rewriting, effective textual strategies - clarity, conciseness, consistency and coherence.

Format and content: style and persuasion; argumentation; document summarization.

Technical writing: scientific and technical writing; formal and informal writing; report, handbook, manual, letter, memorandum, notice, agenda, and minutes.

Report writing: topic, assumptions, hypothesis, overview, analysis and discussion, conclusion, appendices, references.

Readings

2. Leech Thomas, *How to prepare, stage, and deliver winning presentations* (3rd ed.), American Management Association, 2004

Part I Semester II

MCA 201: DATA STRUCTURES AND FILE PROCESSING

Basic Data Structures: Abstract data structures- stacks, queues, linked lists and binary trees.

Sets: Dictionary implementation, use of priority queues, hashing, binary trees, balanced trees, sets with merge-find operations.

Searching: Internal and external searching, use of hashing and balancing techniques.
Memory Management: Garbage collection algorithms for equal sized blocks, storage allocation for objects with mixed size, buddy systems.

Physical Devices: Characteristics of storage devices such as disks and tapes, I/O buffering.

Basic File System Operations: Create, open, close, extend, delete, read-block, write-block, protection mechanisms.

File Organizations: Sequential, indexed sequential, direct, inverted, multi-list, directory systems, Indexing using B-tree, B+tree and their variants, hashing – hash function, collision handling methods, extendible hashing.

Readings

5. B.Stroupstrup, The C++ Programming Language, Addison Wesley, 2004

MCA 202: DISCRETE MATHEMATICS

Overview: Counting, pegion-hole principle, generating functions, recurrence relations, linear recurrence relations with constant coefficients, homogenous solutions, particular solutions, total solutions, solution by the method of generating functions.

Growth of Functions: Asymptotic notations, monotonicity, comparison of standard functions - floors and ceilings, polynomials, exponentials, logarithms and factorials, summations: summation formulas and properties, bounding summations, approximation by integrals.

Graph Theory: Basic terminology, multigraphs and weighted graphs, paths and circuits, searching techniques: BFS, DFS and their applications, shortest paths in weighted graphs, Eulerian paths and circuits, Hamiltonian paths and circuits, Traveling Salesperson problem, planar graphs, trees and rooted trees, prefix codes, minimal spanning trees, cut sets, directed graphs.

Mathematical Logic: Propositions, connectives, conditionals and biconditionals, well formed formulas, tautologies, equivalence of formulas, duality law, normal forms, inference theory for propositional calculus; predicate calculus: predicates, free and bound variables, inference theory of predicate calculus.

Introduction to algebraic structures groups, lattices and boolean algebra.

Readings

MCA 203: COMPUTER GRAPHICS

Development of computer Graphics: Raster Scan and Random Scan graphics storages, displays processors and character generators, colour display techniques, interactive input/output devices.

Points, lines and curves: Scan conversion, line-drawing algorithms, circle and ellipse generation, conic-section generation, polygon filling anti aliasing.

Two-dimensional viewing: Co-ordinate systems, linear transformations, line and polygon clipping algorithms.

Fractals: Generation, Classification and Dimension. Some basic fractal images- Koch curve, Sperpinski triangle, Mandelbort and Julia sets. Applications.

Three-dimensional concepts: 3-D representations, transformations, perspective and parallel projections, spline curves and surfaces, Quadtree and Octree data structures. Hidden Surface and hidden - line removal algorithms, Shading modelsand colour models for solid objects.

Readings

MCA 204 DATA COMMUNICATION AND COMPUTER NETWORKS

Data Communication: Theoretical basis of data communication; analog and digital signals; asynchronous and synchronous transmission; data encoding and modulation, techniques, broadband and baseband transmission; pulse code modulation, bandwidth, channel, baud rate of transmission; multiplexing; transmission medium; transmission errors - error handling mechanisms.

Network Classification and Data Communication Services: Local Area Networks, Wide Area Network, wireless network, internetworking;

Network Reference Models: Layered architectures, protocol hierarchies, interface and services: ISO-OSI reference model, TCP/IP reference model; internet protocol stacks.

Datalink Layer Functions and Protocols: Framing, error-control, flow -control; sliding window protocol; HDLC; Data link layer of internet.
Medium Access Sublayer: CSMA/CD protocol, switched and fast Ethernet, IEEE standards for LAN.

Network functions and protocols: Switching mechanism: Circuit switching, message switching, packet switching, routing and congestion control, TCP/IP protocol architecture.

Readings

MCA 205: FUNDAMENTALS OF ACCOUNTING AND FINANCE

Accounting: Overview of Accounting using Computers.

Corporate Accounting: Accounting for equity shares / debentures and drafting of financial statement as per company act – 1956

Financial Statement Analysis: Ratios, common size statements and comparative financial statements

Basics of Cost Accounting: Material, labour, overheads, absorption, activity based costing, marginal Costing, including C-V-P Analysis.

Financial Management: Value maximization objective, strategic financial decisions, present value concept, concept of return, risk and value, Long term Investment decision.

Readings

Part II Semester III

MCA 301: DESIGN AND ANALYSIS OF ALGORITHMS

Introduction: RAM model, O(log n) bit model.

Review of data structures: Balanced trees, Mergeable sets.

Algorithm Design Techniques: Iterative techniques, Divide and conquer, dynamic programming, greedy algorithms.

Searching and Sorting Techniques: Review of elementary sorting techniques—selection sort, bubble sort, insertion sort; more sorting techniques—quick sort, heap sort, merge sort, shell sort; external sorting.

Lower bounding techniques: Decision Trees, Adversaries.

String Processing: KMP, Boyre-Moore, Robin Karp algorithms.

Introduction to randomized algorithms: Random numbers, randomized Qsort, randomly Built BST

Graphs: Analysis of Graph algorithms Depth-First Search and its applications, minimum Spanning Trees and Shortest Paths.

Introduction to Complexity Theory: Class P, NP, NP-Hard, NP Completeness.

Introduction to Approximation Algorithms

Readings

MCA 302: SOFTWARE ENGINEERING

Software Engineering: The software crisis, principles of software engineering, programming-in-the-small vs. programming-in-the-large

Software process: The software lifecycle, the waterfall model and variations, risk-driven approaches, introduction to evolutionary and prototyping approaches, agile process models, system classifications
Project management: Relationship to lifecycle, project planning, project control, project organization, risk management, cost models, configuration management, version control, quality assurance, metrics

Software requirements: Requirements analysis, functional and non-functional requirements elicitation, analysis tools, requirements definition, requirements specification, static and dynamic specifications, requirements review.

Software design: Design for reuse, design for change, design notations, design evaluation and validation

Implementation and Maintenance: Programming standards and procedures, modularity, data abstraction, static analysis, unit testing, integration testing, regression testing, verification and validation, tools for testing, fault tolerance, The maintenance problem, the nature of maintenance, planning for maintenance

Readings

MCA 303: DATABASE SYSTEMS

Basic Concepts: Data modeling for a database, abstraction and data integration, three level architecture of a DBMS, overview of relational, network, hierarchical data models.

Database Design: Entity Relationship model, Extended Entity Relationship model

Relational Model & Relational Data Manipulations: Relation, conversion of ER diagrams to relations, integrity constraints, relational algebra, relational domain & tuple calculus

Structured Query Language: DDL, DML, Views, Embedded SQL,

Relational Database Design Concepts: Functional dependencies, determining keys, normalization- 1st, 2nd, 3rd, BCNF, 4th and 5th, lossless join and dependency preserving decomposition

Advanced Database Concepts: Security and recovery, Concurrency Control in databases

Readings

MCA 304: AUTOMATA THEORY

Introduction: Alphabets, strings, and languages.

Finite Automata and Regular Languages: Deterministic and non-deterministic finite automata, regular expressions, regular languages and their relationship with finite automata, pumping lemma and closure properties of regular languages.

Context Free Grammars and Pushdown Automata: Context free grammars (CFG), parse trees, ambiguities in grammars and languages, pushdown automaton (PDA) and the language accepted by PDA, deterministic PDA, Non-deterministic PDA, properties of context free languages; normal forms, pumping lemma, closure properties, decision properties.

Turing Machines: Turing machine as a model of computation, programming with a Turing machine, variants of Turing machine and their equivalence.

Undecidability: Recursively enumerable and recursive languages, undecidable problems about Turing machines: halting problem, Post Correspondence Problem, and undecidability problems about CFGs.

Readings

MCA 305: OPERATING SYSTEMS

Introduction: Operating System as a resource manager, operating system classification, system calls, traps, architectures for operating systems.

Device Management: Goals of I/O software, Design of device drivers.

Processor Management: Process overview, process states and state transition, multi-programming, multi-tasking, levels of schedulers and scheduling algorithms. Process
Synchronization - Critical section and mutual exclusion problem, classical synchronization problems, deadlock prevention. Multithreading

Memory Management: Classical memory management techniques, paging, segmentation, virtual memory.

File Management: Overview of file management system, disk space management, directory structures. Protection domains, access control lists, protection models.

Readings

Part II Semester IV

MCA 401: COMPILER DESIGN

Lexical and Syntactic Analysis: Review of regular languages, design of a lexical analyzer generator, context free grammars, syntactic analysis - design of top down and bottom up parsers.

Syntax directed translation: Top down and bottom up approaches, data types, mixed mode expression; subscripted variables, sequencing statement, subroutines and functions: parameters called by address, by name and by value, subroutines with side effects.

Code generation, machine dependent and machine independent optimization techniques.

Readings

5. S. Chattopadhyay, *Compiler Design*, Prentice-Hall of India, 2005

MCA 402: INFORMATION SECURITY

Overview of Security: Protection versus security; aspects of security–data integrity, data availability, privacy; security problems, user authentication, Orange Book.

Security Threats: Program threats, worms, viruses, Trojan horse, trap door, stack and buffer overflow; system threats- intruders; communication threats- tapping and piracy.
Cryptography: Substitution, transposition ciphers, symmetric-key algorithms-Data Encryption Standard, advanced encryption standards, public key encryption - RSA; Diffie-Hellman key exchange, ECC cryptography, Message Authentication- MAC, hash functions.

Digital signatures: Symmetric key signatures, public key signatures, message digests, public key infrastructures.

Security Mechanisms: Intrusion detection, auditing and logging, tripwire, system-call monitoring;

Readings

MCA 403 NETWORK PROGRAMMING

Overview of TCP/IP. Protocol: Distinction between Transmission Control Protocol and User Data gram Protocol, well-known and empirical Port, connection oriented and connectionless services.

Socket interface: Distinction between socket and connection, socket address structure, socket system calls.

Client Server Interaction: Connection-oriented client-server interaction, connection-less client server interaction, interactive and concurrent server, multiprocessor server and-multi-threaded server design concepts.

Application Development: Design of file transfer protocol, remote log-in protocol etc., using socket interface

Readings

MCA 404 DATABASE APPLICATIONS

Application Design and Development: User interfaces and tools, web interfaces to Databases
Web Fundamentals: HTML, static vs. dynamic web pages, client (Javascript/VB) and server side scripting (JSP/ASP/PHP/VB), web servers and sessions, two level & three level architecture,

Real Life Application Development using Popular DBMS: SQL, procedures & functions, exception handling, triggers, large objects, user defined data types, collection types, bulk loading of data

Query Optimization: Query Processing, query tree, query plans, measures of query cost, estimates of basic operations, equivalent relational algebra expressions, evaluation of expressions

Authorizations in SQL: System and user privileges, granting & revoking privileges, roles, authorization on views, functions and procedures, limitations of SQL authorizations, audit trails

Application Security: Encryption techniques, digital signatures & digital certificates

Readings

2. J. Morrison, M. Morrison and R. Conrad, Guide to Oracle 10g, Thomson Learning, 2005

MCA 405 ADVANCED OPERATING SYSTEMS

Study of contemporary popular operating systems. Detailed design of the following modules of an Operating system will be covered:

Process and Processor Management: Scheduling schemes, Interprocess communication, threads

File Management: Interface between file systems and IOCS, directory structures, allocation of disk space, file protection, file system reliability

I/O Management: I/O system, I/O strategies, buffering.

Memory Management: Swapping, demand paging, segmentation

Readings

2. Gary Nutt, Kernel Projects for Linux, Addison Wesley, 2001

MCA 406 ELECTRONIC COMMERCE

Building Blocks of Electronic Commerce: Introduction, internet and networking technologies, Internet and network protocols, web server scalability, software technologies for building E-commerce applications, distributed objects, object request brokers, component technology, web services, web application architectures, BizTalk framework Compliant Server

Security of E-commerce transactions: Review of cryptographic tools, authentication, signatures, observers, anonymity, privacy, traceability, key certification, management and escrow

Payment protocols and standards: Smart card, e-cash, e-wallet technologies, electronic money and electronic payment systems, business models for electronic commerce, electronic marketplaces, auctions and other market mechanisms, design of auctions, optimization algorithms for marketplaces, multi-agent systems.

Global eCommerce and Law: Cyber law in India. Comparative evaluation of Cyber laws of certain countries.

Readings

MCA 407 NUMERICAL COMPUTING

Solution to Transcendental and Polynomial Equations: Iterative methods, bisection method, secant method, Newton-Raphson method, fixed point iteration, methods for finding complex roots.

Matrices and Linear System of Equations: LU decomposition method for solving systems of equations, Symmetric positive definite matrices and least square approximation, iterative algorithms for linear equations.
Interpolation: Polynomial interpolation, Newton-Gregory, Stirling’s, Bessel’s and Lagrange’s interpolation formula, Newton’s divided differences interpolation formulae.

Curve fitting: B-spline and Approximation: Fitting linear and non-linear curves, weighted least square approximation, method of least square for continuous functions.

Numerical Differentiation and Integration: Numerical differentiation and errors in numerical differentiation, Newton-Cotes formulae, trapezoidal rule, Simpson’s rule, Gaussian integration.

Finite Element Method: Boundary value problems, Rayleigh and Galerkin methods of approximation, applications.

Readings

MCA 408 COMPUTATIONAL LINGUISTICS

Man-Machine Interface: Concept of Artificial Intelligence (AI), information system and information processing, concept of formal language, Natural Language (NL) and real language, natural language as man-machine interface.

Natural Language Processing: Basic characteristic of NL, knowledge representation, level of representation in NL, function of natural language.

Computational Linguistics: Relationship between linguistics and NLP, computational models for phonology, unphology, lexicography, syntax, semantics and discourse.

Processes and Methods: Pursuing applications – machine translation, information retrieval, information extraction, natural language in multimodal and multimedia systems, computer assisted language learning, multilingual on-line natural language processing.

Readings

Part III Semester V

MCA 501 MODELING AND SIMULATION

Systems and environment: Concept of model and model building, model classification and representation, Use of simulation as a tool, steps in simulation study.

Continuous-time and Discrete-time systems: Laplace transform, transfer functions, state-space models, order of systems, z-transform, feedback systems, stability, observability, controllability. Statistical Models in Simulation: Common discrete and continuous distributions, Poisson process, empirical distributions

Random Numbers: Properties of random numbers, generation of pseudo random numbers, techniques of random number generation, tests for randomness, random variate generation using inverse transformation, direct transformation, convolution method, acceptance-rejection

Design and Analysis of simulation experiments: Data collection, identifying distributions with data, parameter estimation, goodness of fit tests, selecting input models without data, multivariate an time series input models, verification and validation of models, static and dynamic simulation output analysis, steady-state simulation, terminating simulation, confidence interval estimation, Output analysis for steady state simulation, variance reduction techniques

Queuing Models: Characteristics of queuing systems, notation, transient and steady-state behavior, performance, network of queues

Large Scale systems: Model reduction, hierarchical control, decentralized control, structural properties of large scale systems

Readings

1. Narsingh Deo, **System Simulation with Digital Computer**, Prentice Hall of India, 1999
MCA 502 VISUAL PROGRAMMING

Introduction: Development in a visual programming environment to develop interactive programs using a graphical user interface, iconic systems and their specifications, messages and message passing/events and event-handling in visual programming environment.

Programming: Programming with graphics devices, interaction with the user in event-based graphical environment, implementation of visual systems, different components and controls of visual system. Elementary data base usage.

Project: a programming project involving object-oriented design, user interface design and implementation, and coding to support the interface and database linkages. It can be an Internet application in a visual programming environment.

Readings

MCA 503 DATA MINING

Overview: The process of knowledge discovery in databases, predictive and descriptive data mining techniques, supervised and unsupervised learning techniques.

Techniques of Data Mining: Link analysis, predictive modeling, database segmentation, score functions for data mining algorithms, Bayesian techniques in data mining.

Issues in Data Mining: Scalability and data management issues in data mining algorithms, parallel and distributed data mining, privacy, social, ethical issues in KDD and data mining, pitfalls of KDD and data mining.

Readings

1. Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, 2002
2. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques (2nd ed.), Morgan Kaufmann, 2006.
3. Arun Pujari, Data Mining Techniques, University Press, 2001
5. G.K. Gupta, Introduction to Data Mining with Case Studies, Prentice-Hall of India, 2006
MCA 504 COMPUTATIONAL INTELLIGENCE

Fuzzy Logic Systems: Notion of fuzziness, fuzzy modeling, operations on fuzzy sets, T-norms and other aggregation operators, basics of approximate reasoning, compositional rule of inference, fuzzy rule based systems, (Takagi-Sugeno and Mamdani-Assilian models), schemes of fuzzification, inferencing, defuzzification, fuzzy clustering, fuzzy rule based classifier

Genetic Algorithms: Genetic operators, building block hypothesis, evolution of structure, genetic algorithms based on tree and linear graphs, applications in science and engineering

Artificial Neural Networks: The neuron as a simple computing element, the perceptron, multilayer neural networks, accelerated learning in multilayer neural networks

Rough Sets: Information Systems, decision tables, indiscernibly relation, set approximation, approximation of family of sets, analysis of decision tables.

Readings

MCA 505 ARTIFICIAL INTELLIGENCE

Introduction and Problem Solving: Various definitions of AI, Introduction to AI applications and AI techniques, Production systems, control strategies, reasoning - forward & backward chaining

Intelligent Agents: Definitions of a rational agent, reflex, model-based, goal-based, and utility-based agents, the environment in which a particular agent operates

Search and Game Playing: Breadth first search, depth first search, iterative deepening, uniform cost search, hill climbing, simulated annealing, genetic algorithm search, heuristic search, Best first search, A* algorithm, AO* algorithm, Minmax & game trees, refining minmax, Alpha – Beta pruning, constraint satisfaction

Knowledge Representation: First order predicate calculus, resolution, unification, natural deduction system, refutation, logic programming, PROLOG, semantic networks, frame system, value inheritance, conceptual dependency, Ontologies

Planning: basic representation for planning, symbolic-centralized vs. reactive-distributed, partial order planning algorithm

Uncertainty: different types of uncertainty - degree of belief and degree of truth, various probability constructs - prior probability, conditional probability, probability axioms, probability distributions, and joint probability distributions, Bayes' rule, other approaches to modeling uncertainty such as Dempster-Shafer theory and fuzzy sets/logic
Natural language processing: component steps of communication, contrast between formal and natural languages in the context of grammar, parsing, and semantics

Readings

4. R. Akerkar, Introduction to Artificial Intelligence, Prentice-Hall of India, 2005
8. Saroj Kaushik, Logic and Prolog Programming, New Age International Publisher, 2006

MCA 506 DIGITAL IMAGE PROCESSING AND MULTI-MEDIA

Fundamental Steps in Image Processing: Element of visual perception, a simple image model, sampling and quantization, some basic relationships between pixel, image geometry in 2D, image enhancement in the spatial domain.

Introduction to spatial and frequency methods: Basic gray level transformations, histogram equalization, local enhancement, image subtraction, image averaging, basic spatial, filtering, smoothing spatial filters, sharpening spatial filters.

Introduction to the fourier transformation: Discrete fourier transformation, fast fourier transformation, filtering in the frequency domain, correspondence between filtering in the spatial and frequency domain smoothing frequency-domain filters, sharpening frequency-domain filters, homomorphic filtering, dilation and erosion, opening and closing, hit-or-miss transformation.

Some basic morphological algorithms: Line detection, edge detection, gradient operator, edge linking and boundary detection, thresholding, region-oriented segmentation, representation schemes like chain codes, polygonal approximations, boundary segments, skeleton of a region, recognition and interpretation patterns and pattern classes, decision-theoretic methods, introduction to neural network.

Introduction to Image Compression: JPEG, MPEG, Wavelets, operating system issues in multimedia, real time OS issues, interrupt latency etc., network management issues Like QOS guarantee, resource reservation, traffic specification etc., security issues like digital watermarking, partial encryption schemes for video stream encryption.

Latest developments in field of multimedia like VOIP, video on demand and video conferencing.

Readings

MCA 507 NEURAL NETWORKS

Introduction: Neuron as basic unit of Neurobiology, McCulloch-Pitts model, Hebbian Hypothesis; limitations of single-layered neural networks.

Kernel methods and support vector machines: binary classification, multiclass classification, allowing for training errors: soft margin techniques; neural networks and temporal sequences: sequence recognition, sequence generation; applications.

Readings

MCA 508 COMBINATORIAL OPTIMIZATION

Introduction: Optimization problems, neighborhoods, local and global optima, convex sets and functions, simplex method, degeneracy; duality and dual simplex algorithm, computational considerations for the simplex and dual simplex algorithms-Dantzig-Wolfe algorithms.

Integer Linear Programming: Cutting plane algorithms, branch and bound technique and approximation algorithms for traveling salesman problem.

Graph Algorithms: Primal-Dual algorithm and its application to shortest path, Math-flow problems (Ford and Fulkerson labeling algorithms, Dijkstra’s algorithm, Ford-Warshall algorithms), networking labeling and digraph search, Max-flow problem, matching problem, bipartite matching algorithm, non-bipartite matching algorithms, weighted matching-hungarian
method for the assignment problem, non-bipartite weighted matching problem, efficient spanning tree algorithms, algorithm for matroid intersection problem.

Readings

MCA 509 SOFTWARE QUALITY ASSURANCE AND TESTING

Introduction: Concept of Software quality, product and process quality, software quality metrics, quality control and total quality management, quality tools and techniques, quality standards.

Designing software quality assurance system: Statistical methods in quality assurance, fundamentals of statistical process control, process capability, Six-sigma quality.

Testing: Test strategies, test planning, functional testing, stability testing and debugging techniques

Reliability: Basic concepts, reliability measurements, predictions and management.

Readings

MCA 510 MACHINE LEARNING

Overview and Introduction to Bayes Decision Theory: Machine intelligence and applications, pattern recognition concepts classification, regression, feature selection, supervised learning class conditional probability distributions, Examples of classifiers bayes optimal classifier and error, learning classification approaches.
Linear machines: General and linear discriminants, decision regions, single layer neural network, linear separability, general gradient descent, perceptron learning algorithm, mean square criterion and widrow-Hoff learning algorithm; multi-Layer perceptrons: two-layers universal approximators, backpropagation learning, on-line, off-line error surface, important parameters.

Learning decision trees: Inference model, general domains, symbolic decision trees, consistency, learning trees from training examples entropy, mutual information, ID3 algorithm criterion, C4.5 algorithm continuous test nodes, confidence, pruning, learning with incomplete data

Instance-based Learning: Nearest neighbor classification, k-nearest neighbor, nearest neighbor error probability.

Machine learning concepts and limitations: Learning theory, formal model of the learnable, sample complexity, learning in zero-bayes and realizable case, VC-dimension, fundamental algorithm independent concepts, hypothesis class, target class, inductive bias, occam's razor, empirical risk, limitations of inference machines, approximation and estimation errors, Tradeoff.

Machine learning assessment and Improvement: Statistical model selection, structural risk minimization, bootstrapping, bagging, boosting.

Support Vector Machines: Margin of a classifier, dual perceptron algorithm, learning non-linear hypotheses with perceptron kernel functions, implicit non-linear feature space, theory, zero-Bayes, realizable infinite hypothesis class, finite covering, margin-based bounds on risk, maximal margin classifier.

Readings

MCA 511 EMBEDDED SYSTEMS

Introduction to Embedded Systems: Overview of embedded systems, features, requirements and applications of embedded systems, recent trends in the embedded system design, common architectures for the ES design, embedded software design issues, communication software, introduction to development and testing tools.

Embedded System Architecture: Basics of 8 – bit RISC microcontroller (PIC), block diagram, addressing modes, instruction set, timers, counters, stack operation, programming using PIC controller, basics of 32 – bit microprocessor (ARM), processor and memory organization, data operations, flow of control, pipelining in ARM, ARM bus (AMBA).
Embedded Software: Programming in an embedded environment, Programming for microcontrollers such as Intel 8051 and PIC. Overview of Java 2 micro edition (J2ME), concept of a MIDLET, applications of J2ME in mobile communication.

Interfacing and Communication Links: Serial interfacing, real time clock, SPI / micro wire bus, I2C bus, CAN bus, PC parallel port, IRDA data link, PCI bus architecture.

Operating Systems for Embedded Systems: OS Fundamentals, processes and threads, context switching, scheduling issues, inter task communication, introduction to memory management, evaluating OS performance, real time operating systems, popular RTOS and their applications.

Applications of Embedded Systems: Industrial and control applications, networking and telecom applications, DSP and multimedia applications, applications in the area of consumer appliances, concept of smart home.

Readings

MCA 512 CRYPTOGRAPHY

Elementary number theory: Prime numbers, Fermat’s and Euler’s theorems, Testing for primality, Chinese remainder theorem, discrete logarithms.

Finite fields: Review of groups, rings and fields; Modular Arithmetic, Euclidean Algorithms, Finite fields of the form GF(p), Polynomial Arithmetic, Finite fields of the form GF(2^n).

Message authentication and hash functions, Digital Signatures and authentication protocols, Public key infrastructure, Cryptanalysis of block and stream ciphers.

Readings
MCA 513 PROGRAMMING PARADIGMS

Overview: Overview of programming languages, programming paradigms and models.

Imperative Language: Principles, data, flow of control, program, composition, examples of imperative languages.

Object Oriented Paradigms: Principles, classes, inheritance, class hierarchies, polymorphism, dynamic binding reference semantics -and their implementation.

Functional Programming: Principles, functions, lists, types and polymorphisms, higher-order functions, lazy evaluation, equations and pattern matching, program development in LISP, implementation of -LISP.

Logic Programming: Principles, Horn clauses and their execution, logical variables, relation, data structures, controlling the search order.

Parallel Programming: Principles of Parallelism, co-routines, communication and synchronization, parallel procedural and logic programming concepts and their implementation

Readings

2. T.W. Pratt, Programming Languages: Design and Implementation (2nd ed.) Printice Hall, NJ, 2000
5. P.H. Winston and B.K.P. Horn, LISP (3rd ed.), Pearson Education Asia, 2000

MCA 514 DATABASE SYSTEMS AND IMPLEMENTATION

Overview of Database Management Concepts and models: Data Definition Language, Data Control Language, Storage management, Query Processing, Transaction Processing, Relational Model, Object Oriented Model and Object-Relational model.

Storage Management and Data Representation: Storage and access of data in secondary storage, Disk failures, Recovery from disk crashes-RAID levels 1 to 6. Representation of various data types, Fixed length/variable length data/record formats, Logical/physical addressing schemes, Pointer Swizzling, pinning/unpinning of records.

Index Structures for Single Dimension searches: Primary and secondary indexes, dense and sparse indexes, B+tree indexes, Hash indexes-linear and extensible hash indexes.
Index Structures for Multidimensional searches: Grid files, KD-trees, Quad trees, R-trees

Query Processing and Optimization: Query parsing, Algorithms and cost estimation for various operation - select, project, cross product, join, union, intersection, difference, and aggregate operations. Equivalent relational algebra expressions, generation of query plans and choice of query plan for query execution. Cost based and Heuristic based query optimization.

Transaction Processing and Concurrency Control: Concept of transaction, ACID properties, Serial and concurrent schedules, Serializability, testing for serializablity, Lock-based protocols, Timestamp based protocols, deadlock handling

Recovery: Classification of failures, Log based recovery, shadow paging, buffer management

Readings

MCA 515 HUMAN RESOURCE MANAGEMENT

Job Analysis and Job Design: Purpose and uses of Job Analysis, Job Analysis Technique, Job Analysis – Methods of Data Collection, Job Design Approaches, Job Characteristic Approach to Job Design.

Career Planning and Development: Career Development, Career Management.

Industrial Relations: Characteristics of Industrial Relations, Significance of Harmonious Industrial Relations, Approaches to Industrial Relations, Factors Affecting Industrial Relations Strategy, Causes of Poor Industrial Relations, Effects of Poor Industrial Relations.

Readings

MCA 516 XML and DATABASES

Introduction to XML: Representing data in XML, Element Content Model, Document Type Definition, XML schemas

Presentation of XML documents on the web: HTML, XHTML, CSS, XSLT, XSL-FO, XLinks, XPointers, XForms, Xpath

Database Concepts: Review of Relational, Object Relational and Object Oriented Database concepts

Type of Documents: Data-Centric Documents and Document Centric Documents

Mappings between traditional Databases and XML documents: Mapping Document Schemas to Database Schemas -Table-Based Mapping and Object-Relational Mapping, use of DOM, SAX and web enabled databases

Query Languages: Template Based Query languages and SQL Based Query Languages, XQuery

Native XML databases: Native XML Database Architectures, Storing Data in a Native XML Database, Retrieving Data from Native databases, Security, Transactions, Locking and Concurrency, Round-tripping

Applications of XML & Databases: Case Studies

Readings

MCA 517 SATELLITE AND MOBILE COMMUNICATION NETWORKS

Satellite Communication and Networks: Geosynchronous satellite, low orbit satellite networks, polling, ALOHA, FDMA TDMA, CDMA, low orbit satellite for mobile communication, VSAT networks.

Mobile Voice Communication and Networks: Global Systems for Mobile communication (GSM), Code Division Multiple Access (CDMA).

Mobile Data Communication and Networks: High speed circuits switch data (HSCSD), GSM General Pocket Radio Service (GPRS), Third Generation Mobile Systems.

Readings