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Unit-1: Limits, Continuity and
Differentiability

Unit Overview
The independent work of two famous mathematicians, Isaac Newton and Gottfried Leibniz.
in the 17th century, laid foundation to calculus. Differential Calculus and Integral Calcu-
lus are two main parts of Calculus. In this unit, we will discuss the concepts of Limits,
Continuity and Differentiability. It is divided into four lessons.

In Lesson-1, we will discuss the concepts of the limit of a function. Both informal and
formal approach(ϵ−δ approach) are to be used. Limits of various kinds of functions, limits
at infinity and infinite limits will be discussed. Some theorems which help us to evaluate
limits are to be discussed in this lesson.

In Lesson-2, we will discuss two important concepts of Calculus, namely continuity and
differentiability. We will discuss important algebraic properties of these topics together
with their applications. Types of discontinuity and the geometrical interpretation of the
differentiability will also be discussed.

Continuing with the concepts of Lesson-1 and Lesson-2, in Lesson-3, we will discuss
the higher order derivatives of functions. Leibnitz’s Theorem and its uses will be discussed
in this lesson.

In Lesson-4, we will discuss the partial derivatives of the functions of two and three
variables. Homogeneous functions and the Euler’s Theorem for homogeneous functions
will be studied in this lesson.

Various examples, In-text Exercises and Self-Assessment Exercises will be included in
each lesson to boost the confidence of the students.
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Lesson - 1

Limits

Structure
1.1 Learning Objectives 5

1.2 Introduction 6

1.3 Limit (An Informal Approach) 6

1.4 Limit (Formal Approach) 11

1.5 Algebraic Properties of Limits 14

1.6 Infinite Limits and Limits at Infinity 19

1.6.1 Infinite Limits 19

1.6.2 Limits at Infinity 20

1.6.3 Infinite Limits at Infinity 21

1.7 Summary 25

1.8 Self-Assessment Exercises 27

1.9 Solutions to In-text Exercises 28

1.10 Suggested Readings 29

1.1 Learning Objectives

The learning objectives of this lesson are to:

• understand the concept of the limit of a function.

• study the algebraic properties of limits.

• study the concept of infinite limits and the limits at infinity.

5
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6 LESSON - 1. LIMITS

1.2 Introduction
The concept of a limit or limiting process is essential for the understanding of calculus. It
has been around for thousands of years. In fact, early mathematicians used the limiting
procedure to obtain better and accurate approximations of the areas enclosed by closed
plane curves. Yet, the formal definition of a limit as we know and understand it today did
not appear until the late 19th century. The idea of limits gives us a method for describing
how the outputs of a function behave as the inputs approaches to some specific value. Limits
are used as real-life approximations to calculate derivatives, which are helpful in finding
the slope of the tangent to a curve at a point, maxima-minima of a function etc. The limit
of a function is a fundamental concept in calculus and analysis concerning the behavior of
that function near a particular point.

1.3 Limit (An Informal Approach)
To understand what do we mean by the limit of a function, let us first see how the function
f(x) = x3 − 2 behaves as the value of the variable x approaches towards 1. We have the
following table:

Value of x Value of f(x) Value of x Value of f(x)
0 -2 2 6

0.5 -1.875 1.5 1.375
0.9 -1.271 1.1 -.669

0.99 -1.0297 1.01 -0.969699
0.999 -1.003 1.001 -0.996997

Table 1.1: Values of f(x) = x3 − 2.

We can see that the value of the function f(x) approaches to -1 as the value of x ap-
proaches to 1 from both sides (left and right). This leads to the following informal definition
of the limit of a function

Definition 1.1 (Informal Definition). A function f(x) is said to have a limit L as x ap-
proaches to a, written as

f(x) → L as x→ a or lim
x→a

f(x) = L

if the values of f(x) can be made arbitrary close (as close as we like) to L by choosing
values of x sufficiently close to a.

Note. It is to be noted that

1. the number L mentioned above is a finite real number.

2. while talking about the limit lim
x→a

f(x), it is not necessary for the function f(x) to be
defined at the point x = a.
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1.3. LIMIT (AN INFORMAL APPROACH) 7

3. the limit defined above is also known as two sided limit because it requires the
value of the function f(x) to approach towards L as x approaches towards a from
left(x < a) and right (x > a). When we talk about the limit of a function at a point,
we talk about the two sided limit.

Example 1.1. Consider the limit lim
x→0

cosx− 1

x
. We note that the function

cosx− 1

x
is not

defined at x = 0, but the values of f(x) =
cosx− 1

x
approach to 0 when the value of x

approach to 0, as shown in Table 1.2 and Figure 1.1.

Value of x Value of f(x) Value of x Value of f(x)
-1 0.459698 1 -0.459698

-0.5 0.244835 0.5 -0.244835
-0.25 0.12435 0.25 - 0.12435
-0.1 0.049958 0.1 - 0.049958

-0.01 0.004999 0.01 -0.004999
-0.001 0.000500 0.001 -0.000500

Table 1.2: Values of f(x) =
cosx− 1

x
.

Figure 1.1: Graph of f(x) =
cosx− 1

x

Example 1.2. Let us consider the behavior of f(x) = sin

(
1

x

)
as x → 0. From the Table

1.3 and Figure 1.2, we see that as x → 0, the value of sin
(
1

x

)
oscillates rapidly between

-1 and 1, and does not approach to a fixed real number. Therefore, in this case, we say that

lim
x→0

sin

(
1

x

)
does not exist.
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8 LESSON - 1. LIMITS

Value of x Value of f(x) Value of x Value of f(x)
-1 -0.841471 1 0.841471

-0.1 0.544021 0.1 -0.544021
-0.05 -0.912945 0.05 0.912945

-0.001 -0.826880 0.001 0.826880
-0.0005 -0.930040 0.0005 0.930040

Table 1.3: Values of f(x) = sin

(
1

x

)
.

Figure 1.2: Graph of f(x) = sin
(
d 1
x

)
Definition 1.2 (One Sided Limits).

1. A function f(x) is said to have a limit L as x approaches a from the right, written
lim

x→a+
f(x) = L, if the value of f(x) can be made sufficiently close (as close as we

like) to L by choosing the value of x sufficiently close to a (x > a). This limit is also
known as the right hand limit (R.H.L.).

2. A function f(x) is said to have a limit L as x approaches a from the left, written
lim

x→a−
f(x) = L, if the value of f(x) can be made sufficiently close (as close as we

like) to L by choosing the value of x sufficiently close to a (x < a). This limit is also
known as the left hand limit (L.H.L.).
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1.3. LIMIT (AN INFORMAL APPROACH) 9

Example 1.3. Consider the function

f(x) =

{
x2 + 2, x < 0

x− 2, x ≥ 0
. (1.1)

We have the following table for the values of f(x) near x = 2 :

Value of x Value of f(x) Value of x Value of f(x)
-1 3 1 -1

-0.5 2.25 0.5 -1.5
-0.25 2.0625 0.25 -1.75
-0.1 2.01 0.1 -1.9

-0.01 2.0001 0.01 -1.99
-0.001 2.000001 0.001 -1.999

Table 1.4: Values of f(x).

Figure 1.3: Graph of f(x).

From the Table 1.4, we observe that the value of the function f(x) approaches towards
2 as the value of x approaches towards 0 from the left (x < 0). On the other hand, if the
value of x approaches towards 0 from the right (x > 0), the value of the function f(x)
approaches towards -2. Thus we write

lim
x→0+

f(x) = −2 and lim
x→0−

f(x) = 2.
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10 LESSON - 1. LIMITS

Theorem 1.1 (Necessary and Sufficient Condition). The limit of a function f(x) exists at
a point x = a if and only if both the two sided limits of f(x) exist at x = a and they are
equal. That is;

lim
x→a

f(x) = L if and only if lim
x→a+

f(x) = L = lim
x→a−

f(x).

Theorem 1.2 (Non Existence of Limit). The limit of a function f(x) at x = a does not
exist if

1. Either lim
x→a+

f(x) or lim
x→a−

f(x) or both do not exist, or

2. Both lim
x→a+

f(x) and lim
x→a−

f(x) exist, but they are not equal.

Definition 1.3. (Absolute Value Function) Let x ∈ R. Then the absolute value of x is
defined by the function

f(x) =

{
−x, x < 0

x, x ≥ 0
.

and is denoted by |x|.

For example,
| − 10| = 10 and |10| = 10.

Note. We note that

1. |0| = 0.

2. |x| = | − x| > 0, for all non-zero x.

Figure 1.4: Graph of f(x) = |x|.
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1.4. LIMIT (FORMAL APPROACH) 11

Example 1.4. Consider the function f(x) = lim
x→0

|x|
x
, x ̸= 0. We have

L.H.L. = lim
x→0−

|x|
x

= lim
x→0

−x
x

= lim
x→0

(−1) = −1,

and R.H.L. = lim
x→0+

|x|
x

= lim
x→0

x

x
= lim

x→0
(1) = 1.

Since, L.H.L. ̸= R.H.L. Therefore, lim
x→0

|x|
x

does not exists.

Definition 1.4. (Greatest Integer Function) Let x ∈ R. Then the greatest integer function
[x] is defined as the largest integer less than or equal to x.
For example,

[2.4] = 2, [2] = 2, [1.9] = 1, [−1] = −1 and [−1.3] = −2.

Example 1.5. Consider the function f(x) = [x],−2 ≤ x ≤ 2. We have

[x] =



−2, −2 ≤ x < −1

−1, −1 ≤ x < 0

0, 0 ≤ x < 1

1, 1 ≤ x < 2

2, x = 2

Now,

L.H.L. = lim
x→0−

[x] = lim
x→0

(−1) = −1,

and R.H.L. = lim
x→0+

[x] = lim
x→0

0 = 0.

Since, L.H.L. ̸= R.H.L. Therefore, lim
x→0

[x] does not exist. Similarly, we can show that the

limit of f(x) = [x] does not exist at x = −1 and x = 1.

In general, limit of f(x) = [x] defined on R does not exit at all integer values i.e. at
x = 0,±1,±2,±3, . . ..

1.4 Limit (Formal Approach)

Definition 1.5 ( ϵ − δ Approach). Let f(x) be a real valued function defined in a set
containing a, except possibly at a. Then f(x) is said to approach to a real number L as x
approaches to a, if for every real number ϵ > 0, there exists a real number δ > 0, such that

|f(x)− L| < ϵ when 0 < |x− a| < δ.

A.C.-22.11.2022 
Appendix-111



12 LESSON - 1. LIMITS

Note. We note the following:

1. The value of δ depends on ϵ and a.

2. For a given ϵ > 0, the choice of δ is not unique. Once we find one value of δ, any
value that is less than δ also works.

Example 1.6. We will show that for a ∈ R, lim
x→a

c = c, where c is a real constant.

Here f(x) = c, L = c.
Let ϵ > 0 be an arbitrary real number. Since

|f(x)− L| = |c− c| = 0.

Let us choose any real number δ > 0. So, if

0 < |x− a| < δ,

we have
|f(x)− c| = 0 < ϵ.

Since ϵ > 0 is an arbitrary number. Therefore, by ϵ− δ definition, we have

lim
x→a

c = c.

Example 1.7. We will show that for a ∈ R, lim
x→a

x = a. Here f(x) = x, L = a.
Let ϵ > 0 be an arbitrary real number. Since

|f(x)− L| = |x− a|.

Let us choose δ = ϵ. Then δ > 0. So, if

0 < |x− a| < δ,

we have
|f(x)− L| = |x− a| < δ = ϵ.

Since ϵ > 0 is an arbitrary number. Therefore, by ϵ− δ definition, we have

lim
x→a

x = a.
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1.4. LIMIT (FORMAL APPROACH) 13

Example 1.8. Show that for a ∈ R, lim
x→a

(3x− 5) = 3a− 5.

Solution. Let f(x) = (3x− 5) and ϵ > 0 be given. Then

|f(x)− (3a− 5)| = |(3x− 5)− (3a− 5)|
= |3(x− a)|
= 3|x− a|

< ϵ when |x− a| < ϵ

3
.

Therefore, by taking δ =
ϵ

3
, we get

|f(x)− (3a− 5)| < ϵ when |x− a| < δ.

Hence, by ϵ− δ definition, we have

lim
x→a

f(x) = lim
x→a

(3x− 5) = 3a− 5.

Example 1.9. Show that
lim
x→2

(x2 − 3) = 1.

Solution. Let f(x) = x2 − 3 and ϵ > 0 be given. Then

|f(x)− L| = |x2 − 3− (1)|
= |x2 − 4|
= |x− 2||x+ 2|
= |x− 2| (|x|+ |2|) [Using Triangle Inequality of R] (1.2)

Since, we have to find limit of f(x) as x tends to 2, we take values of x near 2. Let us take
x such that |x− 2| < 1 or 1 < x < 3. Then

3 < |x|+ |2| < 5. (1.3)

Therefore, from (1.2) and (1.3), we get

|f(x)− L| ≤ |x− 2|(|x|+ |2|)
< 5|x− 2| when |x− 2| < 1

< ϵ when |x− 2| < ϵ

5
as well as |x− 1| < 1

Therefore, by taking δ = min
{ ϵ
5
, 1
}

, we get

|f(x)− 1| < ϵ when |x− 2| < δ

Hence, by ϵ− δ definition, we have

lim
x→2

x2 − 3 = 1.
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14 LESSON - 1. LIMITS

In-text Exercise 1.1. Using ϵ− δ definition, prove the following:

1. lim
x→3

2x+ 3 = 9

2. lim
x→2

3x2 + 5 = 17

3. lim
x→2

1

x
=

1

2

1.5 Algebraic Properties of Limits

Theorem 1.3. Let
lim
x→a

f(x) = L and lim
x→a

g(x) =M,

then

1. lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = L+M.

2. lim
x→a

(f − g)(x) = lim
x→a

f(x)− lim
x→a

g(x) = L−M.

3. lim
x→a

(k · f)(x) = k · lim
x→a

f(x) = k · L, where k is a real constant.

4. lim
x→a

(f · g)(x) = lim
x→a

f(x) · lim
x→a

g(x) = L ·M.

5. lim
x→a

(
f

g

)
(x) =

lim
x→a

f(x)

lim
x→a

g(x)
=

L

M
provided M ̸= 0.

Some Useful Limits:

1. lim
x→a

xn = an for n ∈ N and for all a ∈ R.

2. lim
x→a

sin(x) = sin(a), lim
x→a

cos(x) = cos(a) for all a ∈ R.

3. lim
x→a

ex = ea for all a ∈ R.

4. lim
x→a

ln(x) = ln(a) for all a > 0, where ln(x) is the natural logarithm.

5. lim
x→0

sinx

x
= 1.

6. lim
x→0

(1 + x)1/x = e.

Example 1.10.
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(i) Let p(x) = p0 + p1x+ · · ·+ pnx
n be a polynomial of degree n where p0, p1, . . . , pn

are constants in R and pn ̸= 0. Then, by using Theorem 1.3, we get

lim
x→a

p(x) = lim
x→a

p0 + lim
x→a

p1x+ · · ·+ lim
x→a

pnx
n

= p0 + p1 lim
x→a

x+ · · ·+ pn lim
x→a

xn

= p0 + p1a+ · · ·+ pna
n

That is,

lim
x→a

p(x) = p(a)

(ii) lim
x→1

(x sinx+ 3 lnx) = lim
x→1

(x sinx) + lim
x→1

(3 lnx) [Using Theorem 1.3(1)]

= lim
x→1

x · lim
x→1

sinx+ 3 · lim
x→1

lnx [Using Theorem 1.3(3,4)]

= 1 · sin 1 + 3 · ln 1
= sin 1 + 3 · 0
= sin 1 + 0 = sin 1

(iii) lim
x→2

x3 + 5

x2 − 6
=

lim
x→2

(x3 + 5)

lim
x→2

(x2 − 6)
[Using Theorem 1.3(5)]

=
lim
x→2

x3 + lim
x→2

5

lim
x→2

x2 − lim
x→2

6
[Using Theorem 1.3(1)]

=

(
lim
x→2

x
)3

+ 5(
lim
x→2

x
)2

− 6
[Using Theorem 1.3(4)]

=
23 + 5

22 − 6

=
8 + 5

4− 6
=

13

−2
=

−13

2

(iv) lim
x→0

sin 4x

x
= 4 · lim

4x→0

sin 4x

4x
[x→ 0 =⇒ 4x→ 0]

= 4 · 1
= 4

(v) lim
x→0

tanx

x
= lim

x→0

sinx

cosx
· 1
x

= lim
x→0

sinx

x
· 1

cosx

= 1 · 1
1
= 1
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16 LESSON - 1. LIMITS

(vi) lim
x→0

(1 + 2x)1/x = lim
2x→0

[
(1 + 2x)1/2x

]2
= lim

y→0

[
(1 + y)1/y

]2
=

[
lim
y→0

(1 + y)1/y
]2

= e2

In-text Exercise 1.2. Discuss the existence of the following limits:

1. lim
x→4

f(x), where f(x) =

{
x4 − x− 1, x ≤ 4

3x− 5, x > 4

2. lim
x→0

2|x|
|x|+ 5

3. lim
x→0

1− cosx

x2

4. lim
x→0

2

(1 + x)3/x

Example 1.11.

(i) Consider the function f(x) =
x+ 2|x|
−5x+ |x|

. We have

lim
x→0−

x+ 2|x|
−5x+ |x|

= lim
x→0

x− 2x

−5x− x

= lim
x→0

−x
−6x

= lim
x→0

1

6
=

1

6
.

Also,

lim
x→0+

x+ 2|x|
−5x+ |x|

= lim
x→0

x+ 2x

−5x+ x

= lim
x→0

3x

−4x

= lim
x→0

3

−4
=

−3

4
.

Since, lim
x→0−

x+ 2|x|
−5x+ |x|

̸= lim
x→0+

x+ 2|x|
−5x+ |x|

. Therefore, lim
x→0

x+ 2|x|
−5x+ |x|

does not exist.
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1.5. ALGEBRAIC PROPERTIES OF LIMITS 17

(ii) Let
p(x)

q(x)
=

x2 + x− 2

x2 + 2x− 3
. We note that p(1) = 0 = q(1). We can write

p(x)

q(x)
= lim

x→1

x2 + x− 2

x2 + 2x− 3

= lim
x→1

(x− 1)(x+ 2)

(x− 1)(x+ 3)

= lim
x→1

(x+ 2)

(x+ 3)

=
1 + 2

1 + 3
[Using Theorem 1.3(5)]

=
3

4
.

(iii) lim
x→−1

x3 + 1

x+ 1
= lim

x→−1

(x+ 1)(x2 − x+ 1)

(x+ 1)

= lim
x→1

(x2 − x+ 1)

= 1 + 1 + 1 [Using Theorem 1.3(1,4)]
= 3.

Theorem 1.4 (Sandwich Theorem). Let X be a subset of R and a ∈ R. Let f(x), g(x)
and h(x) be functions defined on X , except possibly at x = a, such that

1. f(x) ≤ g(x) ≤ h(x) ∀x ∈ X

2. lim
x→a

f(x) = L = lim
x→a

h(x)

Then,
lim
x→a

g(x) = L.

Note. The Sandwich Theorem is also known as the Squeeze Theorem.

Example 1.12. Use the Sandwich Theorem to evaluate

lim
x→0

x sin

(
1

x

)

Solution. Let g(x) = x sin

(
1

x

)
, x ̸= 0. We have

− 1 ≤ sin

(
1

x

)
≤ 1

=⇒ − x ≤ x sin

(
1

x

)
≤ x for x > 0

and − x ≥ x sin

(
1

x

)
≥ x for x < 0.
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18 LESSON - 1. LIMITS

In both the cases as lim
x→0

x = lim
x→0

(−x) = 0, therefore, by using the Sandwich Theorem, we
get

lim
x→0

x sin

(
1

x

)
= 0

Example 1.13. Using the inequality

sinx < x < tanx, x ∈
(
0,
π

2

)
and the Sandwich Theorem, prove that

lim
x→0

sinx

x
= 1.

Solution. We have

sinx < x < tanx, x ∈
(
0,
π

2

)
=⇒ sinx < x <

sinx

cosx
, x ∈

(
0,
π

2

)
=⇒ 1 <

x

sinx
<

1

cosx
, x ∈

(
0,
π

2

)
=⇒ 1 >

sinx

x
> cosx, x ∈

(
0,
π

2

)
(1.4)

Also, if x ∈
(
−π
2
, 0
)

then −x ∈
(
0,
π

2

)
. Therefore, from (1.4)

1 >
sin(−x)
−x

> cos(−x), x ∈
(
−π
2
, 0
)

=⇒ 1 >
sinx

x
> cosx, x ∈

(
−π
2
, 0
)
. (1.5)

Therefore in both cases (when x > 0 and when x < 0), we have

1 >
sinx

x
> cosx

and
lim
x→0

cosx = 1 = lim
x→0

(1)

Hence, by using the Sandwich Theorem, we get

lim
x→0

sinx

x
= 1.

In-text Exercise 1.3. Find the following limits:

1. lim
x→1

x2 − x

x2 − 1
.

2. lim
x→−1

x2 − 1

x2 − 4x− 5
.

3. Use Sandwich Theorem to prove that lim
x→0

sinx = 0.
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1.6 Infinite Limits and Limits at Infinity

1.6.1 Infinite Limits

1. If the values of a function f(x) gets larger and larger (larger than any given K > 0)
as the value of x approaches to a, then we say that the function f(x) tends to ∞ as x
tends to a and represent it by lim

x→a
f(x) = ∞.

For example, lim
x→0

1

x2
= ∞ (see Figure 1.5).

2. If the value of a function f(x) gets smaller and smaller (smaller than any given K <
0) as the value of x approaches to a, then we say that the function f(x) tends to −∞
as x tends to a and represent it by lim

x→a
f(x) = −∞.

For example, lim
x→0

−1

x2
= −∞ (see Figure 1.6).

Figure 1.5: Graph of f(x) =
1

x2
.

Figure 1.6: Graph of f(x) =
−1

x2
.

3. One sided limits can be defined similarly as in section 1.3. For example, lim
x→0+

1

x
= ∞

and lim
x→0−

1

x
= −∞ (see Figure 1.7).
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20 LESSON - 1. LIMITS

Figure 1.7: Graph of f(x) =
1

x
.

4. In the above cases 1-3, we say that lim
x→a

f(x) does not exist, as −∞ and ∞ are not
fixed real numbers.

1.6.2 Limits at Infinity

1. If the values of a function f(x) gets very close (as close as we like) to L as the values
of x becomes larger and larger, then we say that the function f(x) tends to L as x
tends to ∞ and represent it by lim

x→∞
f(x) = L.

For example, lim
x→∞

1

x
= 0 (see Figure 1.8).

2. If the values of a function f(x) gets very close (as close as we like) to L as the values
of x becomes smaller and smaller, then we say that the function f(x) tends to L as x
tends to −∞ and represent it by lim

x→−∞
f(x) = L.

For example, lim
x→−∞

−1

x
= 0 (see Figure 1.9).
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Figure 1.8: Graph of f(x) = 1
x
. Figure 1.9: Graph of f(x) =

−1

x
.

1.6.3 Infinite Limits at Infinity
If the values of a function f(x) becomes infinitely large for infinitely large/small values of
x, then we say that

lim
x→∞

f(x) = ∞ or lim
x→−∞

f(x) = ∞.

Similarly, if the values of a function f(x) becomes infinitely small(negative value) for
infinitely small/large values of x, then we say that

lim
x→−∞

f(x) = −∞ or lim
x→∞

f(x) = −∞.

For example, lim
x→∞

x3 = ∞ and lim
x→−∞

x3 = −∞ (see Figure 1.10).

Figure 1.10: Graph of f(x) = x3
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Some Useful Limits:

1. lim
x→a

1

(x− a)n
= lim

x→a+

1

(x− a)n
= lim

x→a−

1

(x− a)n
= ∞, when n is even.

2. lim
x→a+

1

(x− a)n
= ∞ and lim

x→a−

1

(x− a)n
= −∞, when n is odd.

3. lim
x→∞

xn = ∞ when n is even.

4. lim
x→−∞

xn =

{
∞, when n is even
−∞, when n is odd

.

5. lim
x→0+

lnx = −∞

6. lim
x→∞

lnx = ∞

7. lim
x→∞

ex = ∞

8. lim
x→−∞

ex = 0

9. If lim
x→a

f(x) = ±∞ =⇒ lim
x→a

1

f(x)
= 0, f(x) ̸= 0.

10. lim
x→∞

(
1 +

1

x

)x

= e

11. lim
x→∞

sinx

x
= lim

x→−∞

sinx

x
= 0.

Note. Results similar to those in Theorem 1.3, can be established for the limits at infinity.

Example 1.14. Evaluate

lim
x→0

3− e2/x

5 + e2/x
.

Solution. We have

x→ 0− =⇒ 2

x
→ −∞

=⇒ e2/x → 0.

Therefore,

L.H.L. = lim
x→0−

3− e2/x

5 + e2/x
=

lim
x→0−

(3− e2/x)

lim
x→0−

(5 + e2/x)

=
3− lim

x→0−
e2/x

5 + lim
x→0−

e2/x

=
3− 0

5 + 0
=

3

5
.
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Also,

x→ 0+ =⇒ 2

x
→ ∞

=⇒ e2/x → ∞

=⇒ 1

e2/x
→ 0

Therefore,

R.H.L. = lim
x→0+

3− e2/x

5 + e2/x
=

lim
x→0+

(
3

e2/x
− 1

)
lim
x→0+

(
5

e2/x
+ 1

)

=

lim
x→0+

(
3

e2/x

)
− 1

lim
x→0+

(
5

e2/x

)
+ 1

=
3 · 0− 1

5 · 0 + 1
= −1.

Since L.H.L.̸= R.H.L., i.e. lim
x→0−

3− e2/x

5 + e2/x
̸= lim

x→0+

3− e2/x

5 + e2/x
. Therefore, lim

x→0

3− e2/x

5 + e2/x
does

not exists.

Note. While computing the limits of rational functions as x → ±∞, it is beneficial to
divide the function by highest power of x that appears in the denominator. It is illustrated
in the following example.

Example 1.15. Evaluate following limits:

(i) lim
x→∞

5x− 7

x+ 21

(ii) lim
x→∞

45x2 − 1

7x4 − 11x

(iii) lim
x→∞

x3 + 5x2 − 1

7x2 + 21

A.C.-22.11.2022 
Appendix-111



24 LESSON - 1. LIMITS

Solution. (i) lim
x→∞

5x− 7

x+ 21
= lim

x→∞

5− 7

x

1 +
21

x

=

lim
x→∞

(
5− 7

x

)
lim
x→∞

(
1 +

21

x

)

=
lim
x→∞

5− lim
x→∞

7

x

lim
x→∞

1 + lim
x→∞

21

x

=
5− 0

1 + 0

(
x→ ∞ =⇒ 1

x
→ 0

)
= 5.

(ii) lim
x→∞

45x2 − 1

7x4 − 11x
= lim

x→∞

45

x2
− 1

x4

7− 11

x3

=

lim
x→∞

(
45

x2
− 1

x4

)
lim
x→∞

(
7− 11

x3

)

=
lim
x→∞

45

x2
− lim

x→∞

1

x4

lim
x→∞

7− lim
x→∞

11

x3

=
0− 0

7− 0

(
x→ ∞ =⇒ 1

xn
→ 0 for n > 0

)
= 0.

(iii) lim
x→∞

x3 + 5x2 − 1

7x2 + 21
= lim

x→∞

x3
(
1 +

5

x2
− 1

x3

)
x2
(
7 +

21

x2

)

= lim
x→∞

x

1 +
5

x2
− 1

x3

7 +
21

x2


= ∞
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Example 1.16. lim
x→∞

(√
x2 + 5− x

)
= lim

x→∞

(√
x2 + 5− x

)(√
x2 + 5 + x√
x2 + 5 + x

)

= lim
x→∞

(
√
x2 + 5)2 − x2√
x2 + 5 + x

= lim
x→∞

x2 + 5− x2√
x2 + 5 + x

= lim
x→∞

5√
x2 + 5 + x

= lim
x→∞

5

x√
1 +

5

x2
+ 1

=
lim
x→∞

5

x√
1 + lim

x→∞

5

x2
+ 1

=
0√

1 + 0 + 1
= 0.

In-text Exercise 1.4. Find the following limits:

1. lim
x→2+

x+ 2

x2 − 4
.

2. lim
x→∞

(√
x4 + 5x2 − x2

)
.

3. lim
x→∞

(√
x4 + 3x− x2

)
.

1.7 Summary
In this lesson we have discussed the following points:

1. A function f(x) is said to have a limit L as x approaches a, written lim
x→a

f(x) = L

if the values of f(x) can be made close (as close as we like) to L by choosing the
values of x sufficiently close to a. It is expressed by lim

x→a
f(x) = L.

2. A function f(x) is said to have a limit L as x approaches a from the right, written
lim

x→a+
f(x) = L, if the value of f(x) can be made close (as close as we like) to L by

choosing values of x sufficiently close to a (x > a). This limit is also known as the
right hand limit (R.H.L.).

3. A function f(x) is said to have a limit L as x approaches a from the left, written
lim

x→a−
f(x) = L if the value of f(x) can be made close (as close as we like) to L by

A.C.-22.11.2022 
Appendix-111



26 LESSON - 1. LIMITS

choosing values of x sufficiently close to a (x < a). This limit is also known as the
left hand limit (L.H.L.).

4. Necessary and sufficient condition: The limit of a function f(x) exists at a point
x = a if and only if both the two sided limits of f(x) exist at x = a and they are
equal. That is;

lim
x→a

f(x) = L if and only if lim
x→a+

f(x) = L = lim
x→a−

f(x).

5. Non existence of limit: The limit of a function f(x) at x = a does not exist if

(i) Either lim
x→a+

f(x) or lim
x→a+

f(x) or both do not exist, or

(ii) Both lim
x→a+

f(x) and lim
x→a−

f(x) exist, but they are not equal.

6. Formal Definition of Limit (ϵ − δ Approach): Let f(x) be a real valued function
defined in a set containing a, except possibly at a. Then f(x) is said to approach to
a real number L as x approaches to a, if for every real number ϵ > 0, there exists a
real number δ > 0, such that

|f(x)− L| < ϵ when 0 < |x− a| < δ.

7. Algebra of limits:

(i) Limit of the sum/difference/product of functions f and g is equal to the sum/
difference/product of limits of f and g.

(ii) Limit of the quotient of functions f and g is equal to the quotient of limits of f
and g provided the limit of the divisor is not-zero.

8. Sandwich Theorem: Let X be a subset of R and a ∈ R. Let f(x), g(x) and h(x) be
functions defined on X , except possibly at x = a, such that

(i) f(x) ≤ g(x) ≤ h(x) ∀x ∈ X

(ii) lim
x→a

f(x) = L = lim
x→a

h(x)

Then,
lim
x→a

g(x) = L.

9. Infinite limits:

(i) If the values of a function f(x) gets larger and larger (larger than any given
K > 0) as the value of x approaches to a, then we say that the function f(x)
tends to ∞ as x tends to a and represent it by lim

x→a
f(x) = ∞.

(ii) If the value of a function f(x) gets smaller and smaller (smaller than any given
K < 0) as the value of x approaches to a, then we say that the function f(x)
tends to −∞ as x tends to a and represent it by lim

x→a
f(x) = −∞.
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10. Limits at Infinity:

(i) If the values of a function f(x) gets very close (as close as we like) to L as the
values of x becomes larger and larger, then we say that the function f(x) tends
to L as x tends to ∞ and represent it by lim

x→∞
f(x) = L.

(ii) If the values of a function f(x) gets very close (as close as we like) to L as
the value of x becomes smaller and smaller, then we say that the function f(x)
tends to L as x tends to −∞ and represent it by lim

x→−∞
f(x) = L.

11. Infinite limits at Infinity:

(i) If the value of a function f(x) becomes infinitely large for infinitely large/small
values of x, then we say that

lim
x→∞

f(x) = ∞ or lim
x→−∞

f(x) = ∞.

(ii) If the value of a function f(x) becomes infinitely small(negative value) for in-
finitely small/large values of x, then we say that

lim
x→−∞

f(x) = −∞ or lim
x→∞

f(x) = −∞.

1.8 Self-Assessment Exercises
1. Using the ϵ− δ definition, prove the following:

(i) lim
x→1/2

(7x− 3) = 1/2

(ii) lim
x→−2

(x2 + 5) = 9

2. Show that lim
x→5

|x− 5|
x− 5

does not exists.

3 . Discuss the existence of the limit of the function at x = 0

f(x) =


e3/x − e−3/x

e3/x + e−3/x
, x ̸= 0

0, x = 0
.

4. Find the values of a for which lim
x→2

(x+ 3)(x+ a)

x2 − 4
exists.

5. Find the value of a for which lim
x→3

f(x) exists, where

f(x) =

{
4x− 5, x ≤ 3

x+ 2a, x > 3
.

6. Discuss the existence of lim
x→0

x2 + 2x

|x|
.

7. Find the following limits
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(i) lim
x→∞

x4 − 3x2 + 5

5x4 − 3x+ 9
,

(ii) lim
x→∞

√
x2 + 2

x2 − 9x+ 1
,

(iii) lim
x→∞

(
√
x8 − 4x3 − x4)

(iv) lim
x→∞

(
√
x8 − 4x4 + 2x− x4).

8. Find the limit lim
x→2

(
|x− 2|
x− 2

+ [x]

)
.

9. Show that lim
x→0

x(x+ 2)

|x|
does not exist.

10. By using Sandwich Theorem, prove that

lim
x→0

cosx = 1.

11. Find the following limits:

(i) lim
x→∞

sin 2x

sin 5x

(ii) lim
x→∞

tan 4x

tan 3x

(iii) lim
x→∞

(
sin 2x

tan 3x

)2

1.9 Solutions to In-text Exercises
Exercise 1.2

1. Limit does not exist.

2. 0.

3.
1

2

4.
2

e3

Exercise 1.3

1.
1

2
.

2.
1

3
.

Exercise 1.4

A.C.-22.11.2022 
Appendix-111



1.10. SUGGESTED READINGS 29

1. Does not exist.

2.
5

2
.

3. 0.

1.10 Suggested Readings
1. Narayan, S. & Mittal, P. K.(2019). Differential Calculus. S. Chand Publishing.
2. Anton, H., Bivens, I. C., & Davis, S. (2015). Calculus: Early Transcendentals. John
Wiley & Sons.
3. Singh, J.P. (2017). Calculus, 2nd Edition. Ane Books Pvt Ltd.
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2.1 Learning Objectives
The learning objectives of this lesson are to:

• learn the concepts of continuity and discontinuity of functions and their property.

• differentiate between various types of discontinuity of a function.

• learn the differentiability/derivability of functions.

• understand the geometrical interpretation of differentiation.

• calculate the derivatives of the functions of various types.

30
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2.2 Introduction
To understand the concept of continuity, let us first consider the scenario where two peo-
ple, A and B, are playing catch. When the ball leaves the hand of person A and reaches
person B, we see that the ball follows an unbroken curve. It can not suddenly disappear
from one point and reappear at some other point. In mathematics, these kinds of unbroken
curves are known as continuous curves, and this type of curve property is called continuity.
Therefore, in mathematics, a continuous function is a function such that a continuous vari-
ation (that is, a change without a jump) of the variable induces a continuous variation of
the value of the function. This means that there are no sudden changes in the value (known
as discontinuity).

In mathematics, the derivative of a real-valued function measures the rate of change of
the function value (output value) corresponding to a change in its argument (input value).
Differentiation is a fundamental tool of calculus. For example, the derivative of the dis-
placement vector of a moving object with respect to time is the object’s velocity: this
measures how instantly the object’s position changes when time advances. The deriva-
tive of a function of a single variable at a chosen input value, when it exists, represents
geometrically the slope of the tangent line to the function’s graph at that point.

2.3 Continuity
Definition 2.1. A function f(x) is said to be continuous at a point x = a if the following
conditions are satisfied:

(i) f(x) is defined at x = a.

(ii) lim
x→a

f(x) exists.

(iii) lim
x→a

f(x) = f(a).

Definition 2.2. A function f(x) is said to be continuous on X ⊂ R, if f(x) is continuous
at each x ∈ X.

Definition 2.3. A function f(x) is said to be discontinuous at x = a if it is not continuous
at x = a, i.e., if any one of the three conditions mentioned in Definition 2.1 are not satisfied.
The point x = a is called a point of discontinuity of f(x).

Example 2.1.

(i) Let p(x), x ∈ R, be a polynomial function. Then p(x) is a continuous function. For
example, let p(x) = 4x2 + x− 5. Since

lim
x→1

(4x2 + x− 5) = 0 = p(1).

Therefore, p(x) is continuous at x = 1.
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(ii) Exponential functions are continuous on R. Since,

lim
x→2

ex = e2, lim
x→2

e−x = e−2, lim
x→2

3x = 32 = 9.

Therefore, ex, e−x and 3x are continuous at x = 2.

(iii) Consider the logarithmic function f(x) = log x, x > 0, x ∈ R. For a > 0, since we
have

lim
x→a

f(x) = lim
x→a

log x

= log a

= f(a)

Therefore, f(x) = log x is continuous on (0,∞). Similarly, lnx, log2 x are also
continuous on (0,∞).

(iv) Consider the trigonometric function f(x) = sinx, x ∈ R. For a ∈ R, since we have

lim
x→a

f(x) = lim
x→a

sinx

= sin a

= f(a)

Therefore, f(x) = sin x is continuous on R. Similarly, cosx, tanx, cotx, secx and
cosecx are also continuous in their respective domains.

Example 2.2. Let

f(x) =

{
5x3 − x, x ≤ 1

3x+ 1, x > 1
.

We have f(1) = 4, i.e., f(x) is defined at x = 1. Now,

L.H.L. = lim
x→1−

f(x) = lim
x→1

(
5x3 − x

)
= 5 · 13 − 1 = 5− 1 = 4,

and R.H.L. = lim
x→1+

f(x) = lim
x→1

(3x+ 1) = 3 · 1 + 1 = 3 + 1 = 4.

Therefore, L.H.L.=R.H.L. That is, lim
x→1

f(x) exists and it is 4 = f(1). Hence, by Definition

2.1, f(x) is continuous at x = 1.

Example 2.3. Consider the function

f(x) =

{
x2 − x, x ≤ 2

2x, x > 2
.

We have f(2) = 2, i.e., f(x) is defined at x = 2. Now,

L.H.L. = lim
x→2−

f(x) = lim
x→2

(
x2 − x)

)
= 22 − 2 = 4− 2 = 2,

and R.H.L. = lim
x→2+

f(x) = lim
x→2

(2x) = 2 · 2 = 4.

Therefore, L.H.L.̸=R.H.L. That is, lim
x→2

f(x) does not exists. Hence, by Definition 2.3, f(x)
is not continuous at x = 2.
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In-text Exercise 2.1. Examine the continuity of the following functions at x = 1:

1. f(x) =
x2 − 3x+ 2

x− 1
,

2. f(x) =


x2 − 3x+ 2

x− 1
, x ̸= 1

1, x = 1
,

3. f(x) =


x2 − 3x+ 2

x− 1
, x ̸= 1

−1, x = 1
.

Example 2.4. Consider the function f defined by

f(x) =


2x+ 5, x < −2

1, x = −2

x+ 3, −2 < x ≤ 0

sinx, 0 < x

Let a be any real number. We will find the values of a at which f(x) is continuous. Consider
the following cases:
Case (i) a < −2 : In this case, f(x) = 2x − 5. Since 2x − 5 is a polynomial, therefore
f(x) is continuous at x = a.
Case (ii) a = −2 : In this case,

lim
x→−2−

f(x) = lim
x→−2−

(2x+ 5) = 2(−2) + 5 = 1 = f(−2)

lim
x→−2+

f(x) = lim
x→−2+

(x+ 3) = −2 + 3 = 1 = f(−2).

Therefore, lim
x→−2

f(x) = 1 = f(−2). Hence, f(x) is continuous at a = −2.

Case (iii) −2 < a < 0 : In this case, f(x) = x+3. Since x+3 is a polynomial, therefore
f(x) is continuous at x = a.
Case (iv) a = 0 : In this case,

lim
x→0−

f(x) = lim
x→0−

(x+ 3) = 0 + 3 = 3

lim
x→0+

f(x) = lim
x→0+

sinx = sin 0 = 0.

Since lim
x→0−

f(x) ̸= lim
x→0+

f(x). Therefore, lim
x→0

f(x) does not exists. So, f(x) is not contin-
uous at a = 0.
Case (v) a > 0 : In this case, f(x) = sinx which is continuous for all real numbers.
Therefore f(x) is continuous at x = a.

Hence f(x) is continuous everywhere except at x = 0.
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Example 2.5. Consider the function f(x) = [x] (greatest integer function) defined on
[−2, 2] as

[x] =



−2, −2 ≤ x < −1

−1, −1 ≤ x < 0

0, 0 ≤ x < 1

1, 1 ≤ x < 2

2, x = 2

Since lim
x→−1−

[x] = −2 ̸= −1 = lim
x→−1+

[x], therefore f(x) = [x] is not continuous at x = −1.

Similarly, [x] is not continuous at x = 0, 1. In general, [x] over R is discontinuous at all
integer values, i.e., x = 0,±1,±2,±3, . . .

2.3.1 Types of Discontinuity

1. Removal Discontinuity: A function f(x) is said to have a removable discontinuity
at x = a if f(x) is defined at x = a, lim

x→a
f(x) exists but lim

x→a
f(x) ̸= f(a). Such type

of discontinuity can be removed by changing the value of the function f(x) at x = a
(see Figure 2.1). .

Figure 2.1: Removable discontinuity at x = 3.

2. Discontinuity of First Kind: A function f(x) is said to have a discontinuity of first
kind at x = a if both lim

x→a−
f(x) and lim

x→a+
f(x) exists but lim

x→a+
f(x) ̸= lim

x→a−
f(x).

This is also known as jump discontinuity because we see a jump in the value of
f(x) as we cross x = a from left to right or vice versa (see Figure 2.2).
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Figure 2.2: Discontinuity of first kind at x = 3.

(i) A function f(x) is said to have a discontinuity of first kind at x = a from left
only, if lim

x→a−
f(x) exists but lim

x→a−
f(x) ̸= f(a).

(ii) A function f(x) is said to have a discontinuity of first kind at x = a from right
only, if lim

x→a+
f(x) exists but lim

x→a+
f(x) ̸= f(a).

3. Discontinuity of Second Kind: A function f(x) is said to have a discontinuity of
second kind at x = a if neither lim

x→a+
f(x) nor lim

x→a−
f(x) exists (see Figure 2.3).

Figure 2.3: Discontinuity of second kind at x = 1.
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(i) A function f(x) is said to have a discontinuity of second kind at x = a from
left only, if lim

x→a−
f(x) does not exists but lim

x→a+
f(x) does.

(ii) A function f(x) is said to have a discontinuity of first kind at x = a from right
only, if lim

x→a+
f(x) does not exists but lim

x→a−
f(x) does.

Example 2.6. Consider the following function

f(x) =

{
x+ 2, x ̸= 1

2, x = 1
.

We note that
lim
x→1

f(x) = lim
x→1

(x+ 2) = 3 ̸= 2 = f(1).

Hence f(x) has a removable discontinuity at x = 1. The discontinuity is removed if we
redefine f(x) at x = 1 as f(1) = 3.

Example 2.7. Consider the following function

f(x) =

{
x− 1, x ≤ 1

2x, x > 1
.

We can see that
lim
x→1−

f(x) = lim
x→1−

(x− 1) = 1− 1 = 0

and
lim
x→1+

f(x) = lim
x→1+

2x = 2 · 1 = 2.

As lim
x→1−

f(x) ̸= lim
x→1+

f(x). Therefore, f(x) has discontinuity of first kind at x = 1.

Example 2.8. Consider the following function

f(x) =


1

x− 1
, x ̸= 1

5x2, x = 1
.

We note that
lim
x→1−

f(x) = lim
x→1−

1

x− 1
= −∞,

and
lim
x→1+

f(x) = lim
x→1+

1

x− 1
= ∞.

Therefore, f(x) has discontinuity of second kind at x = 1.

In-text Exercise 2.2. Examine the type of discontinuity (if any) of following functions at
x = 2

A.C.-22.11.2022 
Appendix-111



2.4. PROPERTIES OF CONTINUOUS FUNCTIONS 37

1.

f(x) =


x2 − 3x+ 2

x− 2
, x ̸= 2

1, x = 2
.

2.

f(x) =

{
3x+ 5, x < 2

x3 − 7, x ≥ 2
.

3.

f(x) =

{
x2 − 1, x ≤ 2

ln(x− 2), x > 2
.

Definition 2.4. A function f(x) is said to be continuous on an open interval (a, b), if f(x)
is continuous at each point x such that a < x < b.

Note: For defining continuity on the closed interval [a, b], we can not have lim
x→a−

f(x) and

lim
x→b+

f(x), as f(x) is not defined for x < a and x > b. Therefore, keeping this in mind, we

give the following definition:

Definition 2.5. A function f(x) is said to be continuous on a closed interval [a, b], if

(i) f(x) is continuous on (a, b),

(ii) f(x) is continuous at a from the right, i.e., lim
x→a+

f(x) = f(a),

(iii) f(x) is continuous at b from the left, i.e., lim
x→b−

(x) = f(b).

2.4 Properties of Continuous Functions
Theorem 2.1 (Algebraic Properties). Let f and g be two functions continuous at a point
x = a,

i.e., lim
x→a

f(x) = f(a), and lim
x→a

g(x) = g(a),

then

1. f + g is continuous at x = a, as

lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = f(a) + g(a) = (f + g)(a).

2. f − g is continuous at x = a, as

lim
x→a

(f − g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = f(a)− g(a) = (f − g)(a).

3. k · f is continuous at x = a for k (a real constant), as

lim
x→a

(k · f)(x) = k · lim
x→a

f(x) = k · f(a) = (k · f)(a),
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4. f · g is continuous at x = a, as

lim
x→a

(f · g)(x) = lim
x→a

f(x) · lim
x→a

g(x) = f(a) · g(a) = (f · g)(a),

5.
f

g
is continuous at x = a, provided g(a) ̸= 0, as

lim
x→a

(
f

g

)
(x) =

lim
x→a

f(x)

lim
x→a

g(x)
=
f(a)

g(a)
=

(
f

g

)
(a).

Theorem 2.2 (Composition of Continuous Functions). Let f : A → B and g : C → D
are two continuous functions such that g(C) ⊆ A, then their composition f ◦ g : C → B
defined by

(f ◦ g)(x) = f(g(x)), ∀x ∈ C (2.1)

is also a continuous function. Moreover,

lim
x→a

(f ◦ g)(x) = lim
x→a

f(g(x)) = f
(
lim
x→a

g(x)
)
= f(g(a)) = (f ◦ g)(a). (2.2)

Example 2.9.

(i) Using Theorem 2.1, tanx =
sinx

cosx
is continuous at all points where cosx ̸= 0.

Therefore, tanx is continuous for all x ∈ R\
{
±π

2
,±3π

2
,±5π

2
, . . .

}
. Similarly we

can also find the points of continuity of other trigonometric functions.

(ii) Consider the function f(x) = sin
(
1
x

)
. We write f = g ◦ h, i.e., f(x) = g(h(x)),

where
g(x) = sinx, x ∈ R and h(x) =

1

x
, x ̸= 0.

Since we know that g(x) = sinx is continuous for all x ∈ R and h(x) = 1
x

is
continuous at all x ∈ R except at x = 0. Hence, by using the Theorem 2.2, f(x) =
g(h(x)) = sin

(
1
x

)
is continuous at all x ∈ R except at x = 0.

(iii) Consider the function f(x) = | cosx|. We write f = g ◦ h, i.e., f(x) = g(h(x)),
where

g(x) = |x|, x ∈ R and h(x) = cos x, x ∈ R.
Since we know that g(x) = |x| is continuous for all x ∈ R and h(x) = cosx is
continuous at all x ∈ R. Hence, by using the Theorem 2.2, f(x) = g(h(x)) = | cosx|
is continuous at all x ∈ R.

(iv) Consider the function

f(x) = sgn(x) =


−1, x < 0

0, x = 0

1, x > 0

Therefore, f(x) = sgn(x) is continuous at all x ∈ R except at x = 0.
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(v) Consider the function f(x) = [sinx]. We write f = g ◦ h, i.e., f(x) = g(h(x)),
where

g(x) = [x], x ∈ R and h(x) = sinx, x ∈ R.
Since we know that g(x) = [x] is continuous for all x ∈ R except at integers, i.e.,
x = 0,±1,±2, . . . and h(x) = sinx is continuous at all x ∈ R. Hence, by using the
Theorem 2.2, f(x) = g(h(x)) = [sin x] is continuous at all x ∈ R except at x such
that

sinx = −1, 0, 1

i.e., x = nπ and x = nπ +
π

2
where n = 0,±1,±2, . . .

In-text Exercise 2.3. Find the points of discontinuity of following functions:

1. f(x) = cosecx

2. f(x) =
1

|x+ 1|

3. f(x) = [2x]

2.5 Differentiability
Definition 2.6. A function f(x) is said to be differentiable(derivable) at x = a if

lim
h→0

f(a+ h)− f(a)

h

exists. This limit is known as the derivative of the function f(x) at x = a and is denoted
by f ′(a). That is,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Note.

1. lim
h→0−

f(a+ h)− f(a)

h
is known as the left hand derivative of f(x) at x = a and it

is denoted by Lf ′(a)

2. lim
h→0+

f(a+ h)− f(a)

h
is known as the right hand derivative of f(x) at x = a and

it is denoted by Rf ′(a).

3. f(x) is differentiable at the point x = a if an only if Lf ′(a) = Rf ′(a).

Example 2.10. Consider the function f(x) = x + 2. Let us check the differentiability of
f(x) at x = 1. We have,

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0

(1 + h+ 2)− (1 + 2)

h
= lim

h→0

h

h
= 1.

Therefore, f is differentiable at x = 1 and f ′(1) = 1.
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Example 2.11. Consider the function

f(x) = |x| =

{
x, x ≥ 0

−x, x < 0

. Let us check the differentiability of f(x) at x = 0. We have,

Lf ′(0) = lim
h→0−

f(0 + h)− f(0)

h
= lim

h→0−

f(h)− f(0)

h
= lim

h→0

−h− 0

h
= lim

h→0

−h
h

= −1

and

Rf ′(0) = lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0+

f(h)− f(0)

h
= lim

h→0

h− 0

h
= lim

h→0

h

h
= 1

Since, Lf ′(0) ̸= Rf ′(0). Therefore f(x) is not differentiable at x = 0.

Example 2.12. Let discuss the differentiability of f(x) = |x|+ |x−1| at x = 0 and x = 1.
First, we simplify the given expression of the function f(x).

If x < 0, then |x| = −x and |x − 1| = −(x − 1). Therefore f(x) = |x| + |x − 1| =
−x− (x− 1) = −2x+ 1.

If 0 ≤ x < 1, then |x| = x and |x − 1| = −(x − 1). Therefore f(x) = |x| + |x − 1| =
x− (x− 1) = 1.

If x ≥ 1, then |x| = x and |x−1| = x−1. Therefore f(x) = |x|+ |x−1| = x+(x−1) =
2x− 1.

Therefore,,

f(x) =


−2x+ 1, x < 0

1, 0 ≤ x < 1

2x− 1, x ≥ 1

.
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Therefore, for the differentiability at x = 0, we have

Lf ′(0) = lim
h→0−

f(0 + h)− f(0)

h

= lim
h→0−

f(h)− f(0)

h

= lim
h→0

−2h+ 1− 1

h

= lim
h→0

−2h

h
= −2

and Rf ′(0) = lim
h→0+

f(0 + h)− f(0)

h

= lim
h→0+

f(h)− f(0)

h

= lim
h→0

1− 1

h

= lim
h→0

0

h
= 0

Since, Lf ′(0) ̸= Rf ′(0). Therefore, f(x) is not differentiable at x = 0.
Similarly, for the differentiability at x = 1, we have

Lf ′(1) = lim
h→0−

f(1 + h)− f(1)

h

= lim
h→0

1− 1

h
= 0

and Rf ′(1) = lim
h→0+

f(1 + h)− f(1)

h

= lim
h→0

2(1 + h)− 1− 1

h

= lim
h→0

2h

h
= 2

Since, Lf ′(1) ̸= Rf ′(1). Therefore, f(x) is not differentiable at x = 1.

In-text Exercise 2.4. Check the differentiability of the function

1. f(x) =

{
x+ 2, x < 2

x2, x ≥ 2
, at x = 2.

2. f(x) = x|x|, at x = 0.

3. f(x) = |x+ 1|+ |x− 1|, at x = −1 and x = 1.

4. f(x) =


sinx2

x
, x ̸= 0

0, x = 0
, at x = 0.
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Definition 2.7 (Derivative Function). Let f(x) be a function defined on (a, b). If f(x) is
derivable at each x ∈ (a, b), then the function f ′

(x) defined by

f
′
(x) = lim

h→0

f(x+ h)− f(x)

h

is known as the derivative of f(x) with respect to x. It is also represented by
d

dx
f(x) ≡

df

dx
(x).

Example 2.13.

(i) Consider the constant function f(x) = c, where c is a real constant. The domain of
f(x) is R. Therefore,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

c− c

h
= 0

Therefore, f ′(x) = 0 for all x ∈ R.

(ii) Consider f(x) = xn, x ∈ R, n ∈ N. Therefore,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)n − xn

h

= lim
h→0

[
xn + nxn−1h+ n(n−1)

2
xn−2h2 + · · ·+ hn

]
− xn

h
(Using Binomial Theorem)

= lim
h→0

nxn−1h+ n(n−1)
2

xn−2h2 + · · ·+ hn

h

= lim
h→0

(
nxn−1 +

n(n− 1)

2
xn−2h+ · · ·+ hn−1

)
= nxn−1

Hence, f ′(x) = nxn−1 ∀x ∈ R, n ∈ N.
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(iii) Consider f(x) =
√
x, x > 0. Therefore,

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
x+ h−

√
x

h

= lim
h→0

(√
x+ h−

√
x

h

)(√
x+ h+

√
x√

x+ h+
√
x

)
= lim

h→0

x+ h− x

h
(√

x+ h+
√
x
)

= lim
h→0

h

h
(√

x+ h+
√
x
)

= lim
h→0

1√
x+ h+

√
x

=
1√

x+
√
x
=

1

2
√
x

Hence f ′(x) =
1

2
√
x

for x > 0.

Note. We note that f ′
(x)is either a constant or a function of x.

Some Useful Derivatives:

1.
d

dx
ex = ex and

d

dx
ax = ax · ln a, where a > 0 is a constant.

2.
d

dx
lnx =

1

x
and

d

dx
loga x =

1

x ln a
, x, a > 0.

3.
d

dx
sinx = cosx and

d

dx
cosx = − sinx.

2.5.1 Geometric Interpretation of a Derivative

Figure 2.4: Slope of the tangent to y = f(x) at the point P (a, f(a)).
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Consider the graph of function y = f(x) given in Figure 2.4. The tangent line to the graph
of y = f(x) at the point P (a, f(a)) is PS. Consider the secant lint PQ joining the points
P (a, f(a)) and Q(a+ h, f(a+ h)). The slope of the secant line is given by

mPQ =
f(a+ h)− f(a)

(a+ h)− a
=
f(a+ h)− f(a)

h
.

From Figure 2.4 we can see that as h → 0, the point Q approaches the point P along the
curve and the secant line PQ approaches towards the tangent line PS. Therefore, the slope
of the tangent line can be defined as the limiting case of slope of secant line. So we have

mPS = lim
h→0

mPQ = lim
h→0

f(a+ h)− f(a)

h
= f ′(a),

provided the limit exists.
Therefore, the derivative f ′(a) is the slope of the tangent line to the curve y = f(x)

at the point (a, f(a)). The equation of the tangent line at the point (a, f(a)) of the curve
y = f(x) is given by

y − f(a) = f
′
(a)(x− a).

Also, the equation of the normal line at the point (a, f(a)) of the curve y = f(x) is given
by

y − f(a) =
1

f ′(a)
(x− a), provided f

′
(a) ̸= 0.

Example 2.14. Consider the parabola f(x) = x2 + 2. We are interested in finding the
equation of tangent and normal line to the given curve at the point (2, 6). Since f ′

(x) = 2x.
Therefore, slope of the tangent at (2, 6) is f ′

(2) = 2 · 2 = 4. Therefore, the equation of the
tangent line at (2, 6) is

y − 6 = 4(x− 2)

=⇒ y − 6 = 4x− 8

=⇒ y = 4x− 2

Also, the equation of the normal line at (2, 6) is

y − 6 =
1

4
(x− 2)

=⇒ y − 6 =
x

4
− 1

2

=⇒ y =
x

4
+

11

2

2.5.2 Derivative as the Rate of Change
In daily life, rate of change occurs in many places. For example:

• A driver is interested in the velocity of the car which comprises of the speed he is
driving with and the direction he is driving towards.
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• In pandemic, the government was interested in the rate at which the Covid-19 virus
was spreading relative to time, so that they can take proper measures to contain the
spread.

• Scientists are interested in the rate at which the glaciers are melting with time due to
temperature increase.

If y = f(x) shows a relation between a variable y and x, then we define

1. The average rate of change of y with respect to x in the interval [a, b], as

Ravg =
f(b)− f(a)

b− a
.

2. The instantaneous rate of change of y with respect to x at the point x = a, as

Rinst = lim
h→0

f(a+ h)− f(a)

h
= f ′(a),

provided the limit exists.

2.6 Some Theorems on Derivatives
Theorem 2.3. Every differentiable function is continuous.

Proof. Let us assume that f(x) is differentiable at x = a. Therefore,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
. (2.3)

Now, we will show that f(x) is continuous at x = a, that is

lim
x→a

f(x) = f(a). (2.4)

If h = x− a, then x→ a implies h→ 0. Therefore from (2.4), we have

lim
h→0

f(a+ h) = f(a). (2.5)

Consider

lim
h→0

f(a+ h) = lim
h→0

[f(a+ h)− f(a) + f(a)]

= lim
h→0

[f(a+ h)− f(a)] + lim
h→0

f(a)

= lim
h→0

[
f(a+ h)− f(a)

h
h

]
+ f(a)

= lim
h→0

f(a+ h)− f(a)

h
lim
h→0

h+ f(a)

= f ′(a) · 0 + f(a) (Using (2.3))
= f(a)

Therefore, f(x) is continuous at x = a.
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Note.

1. From Theorem 2.3, we note that continuity is a necessary condition for a function to
be differentiable. A function f , which is not continuous at the point x = a, can not
be differentiable at x = a.

2. The converse of above theorem is not true. That is, a function which is continuous at
a point may or may not be differentiable at that point. For example,

(i) The function f(x) = |x| is continuous at x = 0 but not differentiable at x = 0.

(ii) The function f(x) = x|x| is continuous as well as differentiable at x = 0.

Theorem 2.4. (Algebraic Properties) Let f and g be two differentiable functions. Then

1.
d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x).

2.
d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x).

3.
d

dx
[k · f(x)] = k · d

dx
f(x), where k is a real constant.

4.
d

dx
[f(x) · g(x)] = d

dx
f(x) · g(x) + f(x) · d

dx
g(x).

5.
d

dx

[
f(x)

g(x)

]
=

d

dx
f(x) · g(x)− f(x) · d

dx
g(x)

[g(x)]2
, provided g(x) ̸= 0.

Example 2.15. Consider the function f(x) = cot x =
cosx

sinx
. Therefore,

f ′(x) =
d

dx
(cotx)

=
d

dx

(cosx
sinx

)
=

sinx
d

dx
(cosx)− cosx

d

dx
(sinx)

sin2 x

=
sinx · (− sinx)− cosx · cosx

sin2 x

=
−
(
sin2 x+ cos2 x

)
sin2 x

=
−1

sin2 x

(
∵ sin2 x+ cos2 x = 1

)
= −cosec2 x
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Similarly, we can prove that,

d

dx
tanx = sec2 x,

d

dx
secx = tanx secx,

and
d

dx
cosecx = −cosecx cotx.

Theorem 2.5. (Chain Rule) Let f : A → B and g : C → D are two differentiable
functions such that g(C) ⊆ A, then their composition f ◦ g : C → B is also differentiable.
Moreover,

(f ◦ g)′(x) = f
′
(g(x)) · g′

(x). (2.6)

Note. Here f ′
(g(x)) represents the derivative of function f with respect to taking g(x) as

a single variable.

Example 2.16. Consider the function h(x) = sin(x2). If f(x) = sin x and g(x) = x2, then
h(x) = f(g(x)). So we have

f
′
(x) = cos x =⇒ f

′
(g(x)) = f

′
(x2) = cos x2,

and g′(x) = 2x.

Therefore,
h′(x) = f

′
(g(x)) · g′

(x) = cos x2 · 2x = 2x cosx2.

In-text Exercise 2.5. Find the derivative of the following functions:

1. f(x) = x2 sinx.

2. f(x) = ln(x2 + sinx).

2.6.1 Derivatives of the Inverse of an Invertible Function
Let y = f(x) be an invertible differentiable function in the domain (a, b) and let x = g(y)
be the inverse of y = f(x), i.e.,

(f ◦ g)(y) = y and (g ◦ f)(x) = x.

Therefore, we have

1 =
d

dx
(x)

=
d

dx
(g ◦ f)(x)

= g
′
(f(x)) · f ′(x) (Using chain rule)

= g
′
(y)f

′
(x)

=⇒ g
′
(y) =

1

f ′(x)
or f

′
(x) =

1

g′(y)
(2.7)
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Example 2.17. Consider the function y = f(x) = x1/n, where x > 0 and n ∈ N. The
inverse function of f(x) is given by g(y) = yn. Therefore, by using (2.7), we get

f
′
(x) =

1

g′(y)

=
1

nyn−1

=
1

n
y1−n

=
1

n
(x1/n)1−n

=
1

n
x1/n−1

Hence,
d

dx
x1/n =

1

n
x1/n−1, x > 0, n ∈ N.

Example 2.18. Consider the function y = f(x) = sin−1(x) where x ∈ [−1, 1], y ∈[
−π
2
,
π

2

]
. The inverse function of f(x) is given by g(y) = sin y. Therefore, by using

(2.7), we get

f
′
(x) =

1

g′(y)

=
1

cos y
, provided cos y ̸= 0 i.e., y ̸= ±π

2

=
1√

1− sin2 y
(∵ cos y > 0 for

−π
2

< y <
π

2
)

=
1√

1− x2

Therefore,
d

dx
sin−1(x) =

1√
1− x2

, x ∈ (−1, 1)

Similarly, we can also prove the following:

1.
d

dx
cos−1 x =

−1√
1− x2

, ∀x ∈ (−1, 1)

2.
d

dx
tan−1 x =

1

1 + x2
, ∀x ∈ R

3.
d

dx
cot−1 x =

−1

1 + x2
, ∀x ∈ R

4.
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, ∀x ∈ R\(−1, 1)

5.
d

dx
cosec −1x =

−1

|x|
√
x2 − 1

, ∀x ∈ R\(−1, 1)
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2.6.2 Application of Derivative
Derivatives have numerous applications. We consider the following few applications of
derivatives:

1. Let x(t) denote the displacement an object at time t relative to the origin. Then

v(t) =
dx

dt
gives the speed of the object at time t and a(t) =

dv

dt
=
d2x

dt2
gives the

acceleration of the object at time t.

2. Let C = C(x) and R = R(x) denote the cost function and the revenue function of

a product for x units of the product. Then,
dC

dx
and

dR

dx
represent the marginal cost

and the marginal revenue of the product.

3. For the differentiable function y = f(x),
dy

dx
is the slope of the tangent line at the

point P (x, y) on the curve y = f(x). That is,
dy

dx
is the slope of the curve at P (x, y).

Similarly, slope of the normal to the curve at P (x, y) is
1
dy
dx

or
dx

dy
.

4. For the function y = f(x), the sign of
dy

dx
at the point P (a, f(a)) determine the

increasing and decreasing nature of the function at the point P .

Example 2.19. Solve the following questions:

(i) If x(t) = t4 − 3t2 represent the position of an object at time t, where t is the time in
seconds and x is the displacement in meters. Find the speed and acceleration of the
object at time t = 3 seconds.

(ii) If the total cost C(x) of a commodity for x units is

C(x) = 5x3 − 2x2 − 30x+ 5000

and the total revenue of the commodity for x units is

R(x) = 2 +
x3

5
.

Find the marginal cost and the marginal revenue of the commodity.

(iii) Find the equation of the tangent and the normal to the curve y = f(x) = x2 at the
point P (1, 1).

Solution. (i) We have,

x(t) = t4 − 3t2

=⇒ v(t) =
dx

dt
= 4t3 − 6t

and a(t) =
dv

dt
= 12t2 − 6
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Hence, the speed of the object at t = 3 seconds is

v(3) = 4 · 33 − 6 · 3 = 90 m/sec

and acceleration is
a(3) = 12 · 32 − 6 = 102 m/sec2.

(ii) We have

C(x) = 5x3 − 2x2 − 30x+ 5000

=⇒ Marginal cost =
dC

dx
= 15x2 − 4x− 30

Also,

R(x) = 200 +
x3

5

=⇒ Marginal revenue =
dR

dx
=

3x2

5

(iii) We have

y = f(x) = x2

=⇒ f
′
(x) = 2x

=⇒ f
′
(1) = 2

Therefore, the equation of the tangent line at the point P (1, 1) is

y − 1 = f
′
(1)(x− 1)

=⇒ y − 1 = 2(x− 1)

=⇒ y = 2x− 1

Similarly, the equation of the normal line to the curve at the point P (1, 1) is

y − 1 =
1

f ′(1)
(x− 1)

=⇒ y − 1 =
1

2
(x− 1)

=⇒ y =
x

2
+

1

2

2.7 Summary
In this lesson we have discussed the following points:

1. A function f is said to be continuous at a point x = a if
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(i) f(x) is defined at x = a.

(ii) lim
x→a

f(x) exists.

(iii) lim
x→a

f(x) = f(a).

2. If any one of the three conditions mentioned above are not satisfied, then we say that
the function f is not continuous at x = a or f has discontinuity at x = a or x = a
is a point of discontinuity of f.

3. Type of discontinuity:

(i) Removal discontinuity: A function f(x) is said to have a removable disconti-
nuity at x = a if f(x) is defined at x = a, lim

x→a
f(x) exists but lim

x→a
f(x) ̸= f(a).

In this type of functions, the discontinuity can be removed by changing the
value of the function f(x) at x = a.

(ii) Discontinuity of first kind: A function f(x) is said to have a discontinuity
of first kind at x = a if both lim

x→a−
f(x) and lim

x→a+
f(x) exists but lim

x→a+
f(x) ̸=

lim
x→a−

f(x). This is also known as jump discontinuity, because we see a jump

in the value of f(x) as we cross x = a from left to right or vice versa.

(iii) Discontinuity of second kind: A function f(x) is said to have a discontinuity
of second kind at x = a if neither lim

x→a+
f(x) nor lim

x→a−
f(x) exists.

4. Properties continuous functions:

(i) The sum, difference and product of two continuous functions are also continu-
ous functions.

(ii) The quotient of two continuous functions is also a continuous function provided
the denominator is non-zero.

(iii) The composition of two continuous functions is also a continuous function.

5. A function f(x) is said to be differentiable/derivable at x = a if

lim
h→0

f(a+ h)− f(a)

h

exists. The limit is known as the derivative of the function f(x) at x = a and is
denoted by f ′(a). Therefore,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

6. Geometric Interpretation of Differentiability: The derivative f ′
(a) of the function

f(x) at x = a is the slope of the tangent line to the curve y = f(x) at the point
(a, f(a)). The equation of the tangent line at point (a, f(a)) to the curve y = f(x) is
given by

y − f(a) = f
′
(a)(x− a).
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Also, the equation of the normal line at point (a, f(a)) to the curve y = f(x) is given
by

y − f(a) =
1

f ′(a)
(x− a), provided f

′
(a) ̸= 0.

7. If y = f(x) shows a relation between a variable y depending on x, then we define

(i) The average rate of change of y with respect to x in interval [a, b] where
h > 0 as

Ravg =
f(b)− f(a)

b− a
.

(ii) The instantaneous rate of change of y with respect to x at the point x = a
as

Rinst = lim
h→0

f(a+ h)− f(a)

h
= f

′
(a),

provided the limit exists.

8. Every differentiable function is continuous but the converse is not necessarily true.

9. (Algebraic Properties) Let f and g be two differentiable functions. Then

(i)
d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x).

(ii)
d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x).

(iii)
d

dx
[k · f(x)] = k · d

dx
f(x), where k is a real constant.

(iv)
d

dx
[f(x) · g(x)] = d

dx
f(x) · g(x) + f(x) · d

dx
g(x).

(v)
d

dx

[
f(x)

g(x)

]
=

d

dx
f(x) · g(x)− f(x) · d

dx
g(x)

[g(x)]2
, provided g(x) ̸= 0.

10. Chain Rule: Let f : A → B and g : C → D are two differentiable functions
such that g(C) ⊆ A, then their composition f ◦ g : C → B is also differentiable.
Moreover,

(f ◦ g)′(x) = f
′
(g(x)) · g′

(x).

11. Let y = f(x) be an invertible differentiable function in the domain (a, b) and let
x = g(y) be the inverse of y = f(x). Then

g
′
(y) =

1

f ′(x)
or f

′
(x) =

1

g′(y)

12. Some applications of derivatives have been discussed.
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2.8 Self-Assessment Exercises
1. Examine the continuity of the function f(x) = |x+ 1|+ |x− 1| on [−2, 2].

2. Obtain the points of discontinuity of the function f(x) defined on [0, 1] as follows:

f(x) =



0, x = 0
1
2
− x, 0 < x < 1

2
1
2
, x = 1

2
1
2
− x, 1

2
< x < 1

1, x = 1

.

3. Examine the continuity at x = 0 and x = 1 of the function f defined as follows:

f(x) =


−x2, x ≤ 0

5x− 4, 0 < x ≤ 1

4x2 − 3x, x > 1

.

Also write the type of discontinuity if any.
4. Determine the values of a and b for which the function defined as follows

f(x) =

ax
2 + b, x ≤ 0

1− 3

x2 + 1
, x > 0

is continuous.
5. Examine the continuity of the function f(x) = [x2], x ∈ R.

6. Discuss the differentiability/derivability of the function

f(x) =


√
x+

1

x− 1
x ≤ 0

x2 + sinx x > 0

at x = 0.

7. Find the value of a and b for which the function

f(x) =

{
ax2 + 2x, x ≤ 2

bx− 1, x > 2

is differentiable at x = 2. (Hint: First find value of a and b for which it is continuous and
then check for differentiability.)

8. Show that the function

f(x) =

{
2x2 + 3x− 4, x ≤ 1

sin
(πx

2

)
, x > 1
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is continuous but not differentiable at the point x = 1.

9. Find the equation of the tangent line to the curve y = x3 − 3x2 + 3 at the point (1, 1).

10. Find the equation of the normal line to the curve y = x2+x cosx+2 at the point (0, 2).

11. Find the derivative of following functions:

(i) f(x) =
√
cosx

(ii) f(x) =
x sinx

x2 + 3x

(iii) f(x) =
ln sinx

cosx2

(iv) f(x) = ex
2
sinx+ x2e2x

(v) f(x) = ln

(
x3 + 2x

x2 + 5

)
12. An object is thrown from a building at a height of 128 meter above ground. The height
of the object can be modeled using the position function x(t) = 128− 16t2. Find the speed
and the acceleration of the object at time t = 5 seconds.

2.9 Solutions to In-text Exercises
Exercise 2.1

1. Not continuous at x = 1

2. Not continuous at x = 1

3. Continuous at x = 1

Exercise 2.2

1. No discontinuity

2. Discontinuity of first kind

3. Discontinuity of second kind

Exercise 2.3

1. x = nπ where n = 0,±1,±2, . . .

2. x = −1

3. x =
n

2
where n = 0,±1,±2, . . .
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Exercise 2.4

1. Not differentiable

2. Differentiable and f ′
(0) = 0

3. Not differentiable

4. Differentiable and f ′
(0) = 1

Exercise 2.5

1. x2 cosx+ 2x sinx.

2.
2x+ cosx

x2 + sinx

2.10 Suggested Readings
1. Narayan, S. & Mittal, P. K.(2019). Differential Calculus. S. Chand Publishing.
2. Anton, H., Bivens, I. C., & Davis, S. (2015). Calculus: Early Transcendentals. John
Wiley & Sons.
3. Singh, J.P. (2017). Calculus, 2nd Edition. Ane Books Pvt Ltd.

A.C.-22.11.2022 
Appendix-111



Lesson - 3

Successive Differentiation

Structure
3.1 Learning Objectives 56

3.2 Introduction 57

3.3 nth Derivatives of Some Standard Functions 60

3.3.1 nth Derivative of (ax+ b)m, where a and b are Constants 60

3.3.2 nth Derivative of ln(ax+ b), where a and b are Constants 61

3.3.3 nth Derivative of amx, where a and m are Constants 62

3.3.4 nth Derivative of sin(ax+ b), where a and b are Constants 62

3.3.5 nth Derivative of cos(ax+ b), where a and b are Constants 63

3.3.6 nth Derivative of eax sin(bx+ c), where a, b and c are Constants 64

3.3.7 nth Derivative of eax cos(bx+ c), where a, b and c are Constants 65

3.4 nth Derivative of Rational Functions 66

3.5 Leibnitz’s Theorem 69

3.6 Summary 72

3.7 Self-Assessment Exercises 74

3.8 Solutions to In-text Exercises 75

3.9 Suggested Readings 75

3.1 Learning Objectives
The learning objectives of this lesson are to:

• understand the concept of successive differentiation.

• to calculate the nth order derivatives of various functions.

• to study Leibnitz’s Theorem and its applications.

56
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3.2 Introduction

In the last lesson, we discussed the derivative of a function f(x) with respect to the inde-
pendent variable x. Since the derivative of f(x) namely f ′(x) is also a function of x, we
can talk about the derivative of f ′(x) also. In this lesson we will discuss about the higher
order derivatives of f(x).

Successive differentiation is the process of differentiating a given function successively
and the derivatives obtained in this process are called successive derivatives.

Let y = f(x) be a function of x. Then the first derivative of y = f(x) with respect to

x is denoted by f ′
(x) or y′

(x) or y1 or
dy

dx
orDy whereD ≡ d

dx
is the differential operator.

Since f ′
(x) =

dy

dx
is also a function of x. If

dy

dx
is differentiable, i.e. y = f(x) is twice

differentiable with respect to x, we denote its second derivative with respect to x by f ′′
(x)

or y′′
(x) or y2 or

d2y

dx2
or D2y.

Similarly, if
d2y

dx2
is differentiable, i.e. y = f(x) is thrice differentiable with respect to

x, we denote its third derivative with respect to x by f ′′′
(x) or y′′′

(x) or y3 or
d3y

dx3
or D3y.

In this manner, if f(x) is differentiable n times with respect to x, we denote the nth

derivative of f(x) with respect to x by f (n)(x) or y(n)(x) or yn or
dny

dxn
or Dny.

Note. We denote the nth order derivative (nth derivative) of the function y = f(x) with

respect to x at x = a by f (n)(a) or y(n)(a) or
dny

dxn

∣∣∣∣
x=a

.

Example 3.1. Consider the function f(x) = x cos 2x+ e2x. We have

f ′(x) = cos 2x− 2x sin 2x+ 2e2x,

f
′′
(x) = −2 sin 2x− 2 sin 2x− 4x cos 2x+ 4e2x (By using the chain rule)

= −4 sin 2x− 4x cos 2x+ 4e2x,

and f
′′′
(x) = −8 cos 2x− 4 cos 2x+ 8 sin 2x+ 8e2x

= −12 cos 2x+ 8 sin 2x+ 8e2x.

Example 3.2. Consider the function y =
lnx

x
. Let us calculate the second order derivative

d2y

dx2
. We have
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58 LESSON - 3. SUCCESSIVE DIFFERENTIATION

dy

dx
=
x · 1

x
− lnx · 1

x2

=
1− lnx

x2

=⇒ d2y

dx2
=
x2 · −1

x
− (1− lnx) · 2x

x4

=
−x− 2x (1− lnx)

x4

=
−1− 2 (1− lnx)

x3

=⇒ d2y

dx2
=

2 lnx− 3

x3

Example 3.3. Let y = x+ tanx. We will prove that

cos2 x
d2y

dx2
+−2y + 2x = 0.

First we calculate the derivatives of y as desired.

dy

dx
= 1 + sec2 x

and
d2y

dx2
= 2 sec x · secx tanx (By using the chain rule)

= 2 sec2 x tanx

Therefore, we have

cos2 x
d2y

dx2
+−2y + 2x = cos2 x · 2 sec2 x tanx− 2(x+ tanx) + 2x

= 0.

Example 3.4. Let x = a(t + sin t) and y = a(1 + cos t). We will find the value of
d2y

dx2
at

t =
π

2
. We have

x = a(t+ sin t) =⇒ dx

dt
= a(1 + cos t)

y = a(1 + cos t) =⇒ dy

dt
= −a sin t
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Therefore
dy

dx
=
dy

dt
· dt
dx

=
dy/dt

dx/dt

=
−a sin t

a(1 + cos t)

=
−2 sin

t

2
cos

t

2

2 cos2
t

2

= − tan
t

2

Now

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dt

(
dy

dx

)
· dt
dx

=

d

dt

(
dy

dx

)
dx

dt

=

−1

2
sec2

t

2
a(1 + cos t)

=

−1

2
sec2

t

2

2a cos2
t

2

=
−1

4a
sec4

t

2

Therefore,
d2y

dx2

∣∣∣∣
t=
π

2

=
−1

4a
sec4

π

4
=

−1

4a
(
√
2)4 =

−1

a

In-text Exercise 3.1. Solve the following questions:

1. Find f ′′′
(x) where f(x) = sin(2x3).

2. If y(x) = a cos 2x + b sin 2x, where a and b are real constants, then show that y′′
+

4y = 0.

3. If x = sin t, y = sin at, show that

(1− x2)
d2y

dx2
− x

dy

dx
+ a2y = 0.
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60 LESSON - 3. SUCCESSIVE DIFFERENTIATION

4. If y = sin(sinx),show that

d2y

dx2
+ tanx

dy

dx
+ y cos2 x = 0.

3.3 nth Derivatives of Some Standard Functions

3.3.1 nth Derivative of (ax+ b)m, where a and b are Constants
Let y = (ax+ b)m. Differentiating with respect to x successively, we get

y1 = ma(ax+ b)m−1

y2 = m(m− 1)a2(ax+ b)m−2

y3 = m(m− 1)(m− 2)a3(ax+ b)m−3

...
yn = m(m− 1)(m− 2) · · · (m− (n− 1))an(ax+ b)m−n (3.1)

Case 1. m is a positive integer such that m ≥ n. Then from (3.1), we have

yn =
m!

(m− n)!
an(ax+ b)m−n

where m! = m(m− 1)(m− 2) · · · 3 · 2 · 1. Therefore,

dn

dxn
(ax+ b)m =

m!

(m− n)!
an(ax+ b)m−n, m ≥ n,m > 0 (3.2)

This also implies that the mth order derivative of (ax + b)m is m!am, which is a constant.
That is

dm

dxm
(ax+ b)m = m!am (3.3)

Case 2. If m = −1, then y =
1

ax+ b
= (ax+ b)−1. Then from (3.1), we have

yn = (−1)(−2)(−3) · · · (−1− (n− 1))an(ax+ b)−1−n

= (−1)(−2) · · · (−n)an(ax+ b)−(n+1)

=
(−1)n(n!)an

(ax+ b)n+1

Therefore,
dn

dxn

(
1

ax+ b

)
=

(−1)n (n!) an

(ax+ b)n+1
(3.4)

Example 3.5. Find the 8th derivative of y = (8x+ 7)10.
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Solution. We have,
y = (8x+ 7)10

Therefore, by using (3.2), with m = 10 and n = 8, we get

y8 =
10!

2!
88 (8x+ 7)2.

Example 3.6. Find the nth derivative of the function

y =
1

(x− 1)2
.

Solution. We have

y =
1

(x− 1)2

= − d

dx

(
1

x− 1

)
.

Therefore,

nth derivative of y = −(n + 1)th derivative of
1

x− 1

= − dn+1

dxn+1

(
1

x− 1

)
= −(−1)n+1 (n+ 1)! 1n+1

(x− 1)n+2

=
(−1)n+2 (n+ 1)!

(x− 1)n+2

3.3.2 nth Derivative of ln(ax+ b), where a and b are Constants
Let y = ln(ax+ b). We have

y1 =
a

ax+ b
.

Since, yn = (n− 1)th derivative of y1, therefore by using (3.4), we have

yn = a · (−1)n−1(n− 1)! an−1

(ax+ b)n
=

(−1)n−1(n− 1)! an

(ax+ b)n

. Therefore,
dn

dxn
ln(ax+ b) =

(−1)n−1 (n− 1)! an

(ax+ b)n
(3.5)

Example 3.7. Consider the function y = ln(4x−3). Then, by using (3.5), the nth derivative
of y is

yn =
(−1)n−1(n− 1)!4n

(4x− 3)n
.
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3.3.3 nth Derivative of amx, where a and m are Constants

Let y = amx. Differentiating successively with respect to x, we get

y1 = mamx ln a,

y2 = m ln a ·mamx ln a = m2 (ln a)2 amx,

y3 = m2 (ln a)2 ·mamx ln a = m3 (ln a)3 amx,

...
yn = mn (ln a)n amx.

Therefore,

dn

dxn
amx = mn (ln a)n amx (3.6)

If a = e, then ln e = 1. Therefore,

dn

dxn
emx = mnemx (3.7)

Example 3.8. Consider the function y = 53x + e2x. Then, by using (3.6) and (3.7), the nth

derivative of y is

yn = 3n (ln 3)n 53x + 2n e2x.

3.3.4 nth Derivative of sin(ax+ b), where a and b are Constants

Let y = sin(ax+ b). Differentiating successively with respect to x, we get

y1 = a cos(ax+ b) = a sin
(π
2
+ ax+ b

) (
∵ sin

(π
2
+ θ
)
= sin θ

)
,

y2 = a · a cos
(π
2
+ ax+ b

)
= a2 sin

(π
2
+
π

2
+ ax+ b

)
= a2 sin

(
2π

2
+ ax+ b

)
,

y3 = a2 · a cos
(
2π

2
+ ax+ b

)
= a3 sin

(
3π

2
+ ax+ b

)
,

...

yn = an sin
(nπ

2
+ ax+ b

)
.

Therefore,

dn

dxn
sin(ax+ b) = an sin

(nπ
2

+ ax+ b
)

(3.8)
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3.3.5 nth Derivative of cos(ax+ b), where a and b are Constants
Let y = cos(ax+ b). Differentiating successively with respect to x, we get

y1 = −a sin(ax+ b) = a cos
(π
2
+ ax+ b

) (
∵ cos

(π
2
+ θ
)
= − sin θ

)
,

y2 = a · (−a) sin
(π
2
+ ax+ b

)
= a2 cos

(π
2
+
π

2
+ ax+ b

)
= a2 cos

(
2π

2
+ ax+ b

)
,

y3 = a2 · (−a) sin
(
2π

2
+ ax+ b

)
= a3 cos

(
3π

2
+ ax+ b

)
,

...

yn = an cos
(nπ

2
+ ax+ b

)
.

Therefore,
dn

dxn
cos(ax+ b) = an cos

(nπ
2

+ ax+ b
)

(3.9)

Example 3.9. Consider the function y = sin 2x sinx. To find the nth derivative, we proceed
as

y = sin 2x sinx

=
1

2
· 2 sin 2x sinx

=
1

2
[cos(2x− x)− cos(2x+ x)] (∵ cos(x− y)− cos(x+ y) = 2 sinx sin y)

=
1

2
[cosx− cos 3x]

Therefore using (3.9), we have

yn =
1

2

[
cos
(nπ

2
+ x
)
− 3n cos

(nπ
2

+ 3x
)]
.

Example 3.10. Consider the function y = cos2 x sinx. To find the nth derivative, we
proceed as

y =
1

2
· 2 cos2 x sinx

=
1

2
(1 + cos 2x) sinx

(
∵ cos 2x = 2 cos2 x− 1

)
=

1

2
[sinx+ cos 2x sinx]

=
1

2
sinx+

1

2
cos 2x sinx

=
1

2
sinx+

1

4
· 2 cos 2x sinx

=
1

2
sinx+

1

4
[sin 3x− sinx] (∵ sin(x+ y) + sin(x− y) = 2 sinx cos y)

=
1

4
sinx+

1

4
sin 3x
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By using (3.8), we have

yn =
1

4
sin
(nπ

2
+ x
)
+

3n

4
sin
(nπ

2
+ 3x

)
3.3.6 nth Derivative of eax sin(bx+ c), where a, b and c are Constants
Let y = eax sin(bx+ c). Differentiating with respect to x, we get

y1 = aeax sin(bx+ c) + beax cos(bx+ c) = eax [a sin(bx+ c) + b cos(bx+ c)] (3.10)

To formulate a proper generalization, let us assume

a = r cos θ, b = r sin θ (3.11)

where r ≥ 0. Therefore, we have

a2 + b2 = r2 cos2 θ + r2 sin2 θ = r2
(
cos2 θ + sin2 θ

)
= r2

=⇒ r =
√
a2 + b2 (3.12)

and

b

a
=
r sin θ

r cos θ
=

sin θ

cos θ
= tan θ

=⇒ θ = tan−1

(
b

a

)
. (3.13)

Therefore, using (3.11), we can write (3.10) in the form

y1 = eax [r cos θ sin(bx+ c) + r sin θ cos(bx+ c)]

= reax sin(bx+ c+ θ) (∵ sin(x+ y) = sinx cos y + cosx sin y)

We can see that y1 is obtained by multiplying y by r and increasing bx+ c by the constant
θ. Using the same process we can calculate y2 from y1 and so on. Hence, we have

y2 = r2eax sin(bx+ c+ 2θ),

y3 = r3eax sin(bx+ c+ 3θ),

...
yn = rneax sin(bx+ c+ nθ).

Therefore,

dn

dxn
eax sin(bx+ c) = rneax sin(bx+ c+ nθ), where r =

√
a2 + b2 and θ = tan−1

(
b

a

)
(3.14)
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3.3.7 nth Derivative of eax cos(bx+ c), where a, b and c are Constants
Let y = eax cos(bx+ c). Differentiating with respect to x, we get

y1 = aeax cos(bx+ c)− beax sin(bx+ c) = eax [a cos(bx+ c) + b sin(bx+ c)] (3.15)

To formulate a proper generalization, let us assume

a = r cos θ, b = r sin θ (3.16)

where r ≥ 0. Therefore, we have

r =
√
a2 + b2, and θ = tan−1

(
b

a

)
.

Therefore, using (3.16), we can write (3.15) in the form

y1 = eax [r cos θ cos(bx+ c)− r sin θ sin(bx+ c)]

= reax cos(bx+ c+ θ) (∵ cos(x+ y) = cos x cos y − sinx sin y)

We can see that y1 is obtained by multiplying y by r and increasing bx+ c by the constant
θ. Using the same process we can calculate y2 from y1 and so on.
Hence, we have

y2 = r2eax cos(bx+ c+ 2θ),

y3 = r3eax cos(bx+ c+ 3θ),

...
yn = rneax cos(bx+ c+ nθ).

Therefore,

dn

dxn
eax cos(bx+ c) = rneax cos(bx+ c+ nθ), where r =

√
a2 + b2 and θ = tan−1

(
b

a

)
(3.17)

Example 3.11. Consider the function y = e2x sin(2x− 1). Comparing it with the function
y = eax sin(bx+ c), we have a = 2, b = 2 and c = −1. Therefore,

r =
√
a2 + b2 =

√
22 + 22 =

√
8,

and θ = tan−1

(
2

2

)
= tan−1(1) =

π

4
.

Therefore, using (3.14), the nth derivative of y is

yn = rne2x sin(2x− 1 + nθ)

= (
√
8)ne2x sin

(
2x− 1 + n

π

4

)
.
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Example 3.12. Consider the function y = e2x sin 2x sinx. To find the nth derivative, we
proceed as

y = e2x sin 2x sinx

=
e2x

2
(2 sin 2x sinx)

=
e2x

2
(cosx− cos 3x)

=
1

2

(
e2x cosx− e2x cos 3x

)
Therefore, using (3.17), the nth derivative of y is

yn =
1

2

[
rn1 e

2x cos (x+ nθ1)− rn2 e
2x cos (3x+ nθ2)

]
(3.18)

where

r1 =
√
22 + 12 =

√
5,

θ1 = tan−1

(
1

2

)
,

r2 =
√
22 + 32 =

√
13,

and θ2 = tan−1

(
3

2

)
.

In-text Exercise 3.2. Find the nth derivative of following functions:

1. y = (5x− 6)n.

2. y =
3

(x+ 2)2
.

3. y = e2x+3.

4. y = cos2 x.

5. y = e2x cos 3x.

3.4 nth Derivative of Rational Functions

In order to find the nth derivative of a rational function, we use method of partial fractions.
If the denominator of each partial fraction obtained consists of real linear factors we use
formulae derived in the previous section to find the nth derivative of the given rational
function. We can take help of following table to calculate partial fractions:
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S.N. Rational Fraction Partial Fraction Form

1.
ax+ b

(x− p)(x− q)

A

x− p
+

B

x− q

2.
ax+ b

(x− p)2
A

x− p
+

B

(x− p)2

3.
ax2 + bx+ c

(x− p)(x− q)(x− r)

A

x− p
+

B

x− q
+

C

x− r

4.
ax2 + bx+ c

(x− p)2(x− q)

A

x− p
+

B

(x− p)2
+

C

x− q

5.
ax2 + bx+ c

(x− p)(x2 + qx+ r)

A

x− p
+

Bx+ C

x2 + qx+ r

where A,B,C are constants in all the above partial fractions.

Example 3.13. Consider the function y =
x

(x+ 3)(2x+ 5)
. Now, to resolve it into partial

fractions, let

x

(x+ 3)(2x+ 5)
=

A

x+ 3
+

B

2x+ 5
, (A,B are constants) (3.19)

=⇒ x

(x+ 3)(2x+ 5)
=
A(2x+ 5) +B(x+ 3)

(x+ 3)(2x+ 5)

=⇒ x = A(2x+ 5) +B(x+ 3)

=⇒ x = (2A+B)x+ 5A+ 3B

By equating coefficients of x and the constant terms on both sides, we get

2A+B = 1

5A+ 3B = 0
(3.20)

By solving (3.20), we get A = 3, B = −5. Substituting values of A and B in (3.19), we
have

y =
x

(x+ 3)(2x+ 5)
=

3

x+ 3
− 5

2x+ 5

Hence, by using (3.4), we have

yn = 3 · (−1)n n! 1n

(x+ 3)n+1
− 5 · (−1)n n! 2n

(2x+ 5)n+1

= (−1)n n!

[
3

(x+ 3)n+1
− 5 · 2n

(2x+ 5)n+1

]
.

Example 3.14. Consider the function y =
4x

(x− 3)2(x+ 1)
. Now, to resolve it into partial
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fractions, let

4x

(x− 1)2(x+ 1)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
, (A,B,C are constants) (3.21)

=⇒ 4x

(x− 1)2(x+ 1)
=
A(x− 1)(x+ 1) +B(x+ 1) + C(x− 1)2

(x− 1)2(x+ 1)

=⇒ 4x = A(x− 1)(x+ 1) +B(x+ 1) + C(x− 1)2

=⇒ 4x = (A+ C)x2 + (B − 2C)x− A+B + C

By equating coefficients of x2, x and the constant terms on both sides, we get

A+ C = 0

B − 2C = 4

−A+B + C = 0

(3.22)

By solving (3.22), we get A = 1, B = 2, C = −1. Substituting values of A,B and C in
(3.21), we have

y =
4x

(x− 1)2(x+ 1)
=

1

x− 1
+

2

(x− 1)2
− 1

x+ 1

Hence, by using (3.4), we have

yn =
(−1)n n! 1n

(x− 1)n+1
+ 2 · (−1)n+2 (n+ 1)! 1n

(x− 1)n+2
− (−1)n n! 1n

(x+ 1)n+1

= (−1)n n!

[
1

(x− 1)n+1
+

2(n+ 1)

(x− 1)n+2
− 1

(x+ 1)n+1

]
Note. If the denominator of the given rational function is not resolvable into real linear
factors, then nth derivative is calculated with the help of the De Moivre’s theorem, which
states that

(cos θ ± i sin θ)n = cosnθ ± i sinnθ, where i =
√
−1,

and by using the factorization x2 + a2 = (x+ ia)(x− ia).

Example 3.15. Consider the function y =
x

x2 + a2
. We can write

y =
x

x2 + a2

=
x

(x+ ia)(x− ia)

=
1

2

[
1

x+ ia
+

1

x− ia

]
(Using partial fractions)

=⇒ yn =
(−1)n n!

2

[
1

(x+ ia)n+1
+

1

(x− ia)n+1

]
(Using (3.4)) (3.23)

To make the result free from i, we put x = r cos θ, a = r sin θ where r =
√
x2 + a2 and θ =

tan−1 a

x
.
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Therefore,

1

(x+ ia)n+1
=

1

(r cos θ + ir sin θ)n+1

=
1

rn+1
(cos θ + i sin θ)−(n+1)

=
1

rn+1
[cos(n+ 1)θ − i sin(n+ 1)θ] (3.24)

and
1

(x− ia)n+1
=

1

(r cos θ − ir sin θ)n+1

=
1

rn+1
(cos θ − i sin θ)−(n+1)

=
1

rn+1
[cos(n+ 1)θ + i sin(n+ 1)θ] (3.25)

Using (3.23)-(3.25), we have

yn =
(−1)n n!

2

[
1

(x+ ia)n+1
+

1

(x− ia)n+1

]
=

(−1)n n!

2rn+1
[cos(n+ 1)θ − i sin(n+ 1)θ + cos(n+ 1)θ + i sin(n+ 1)θ]

=
(−1)n n!

2rn+1
· 2 cos(n+ 1)θ

=
(−1)n n! cos(n+ 1)θ

rn+1

In-text Exercise 3.3. Find the nth derivative of the following functions:

1. y =
x2

(x+ 2)(2x+ 3)

2. y =
1

x2 + a2

3.5 Leibnitz’s Theorem
Leibnitz’s theorem is used for finding the nth derivative of the product of two functions in
the terms of successive derivatives of the functions.

Theorem 3.1 (Leibnitz’s Theorem). If u and v are functions of x having n successive
derivatives, then for n > 1

(uv)n =

(
n

0

)
unv +

(
n

1

)
un−1v1 +

(
n

2

)
un−2v2 · · ·+

(
n

r

)
un−rvr + · · ·

+

(
n

n− 1

)
u1vn−1 +

(
n

n

)
uvn

where (
n

r

)
=

n!

r!(n− r)!
, for r = 0, 1, 2, . . . , n.
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Example 3.16. Consider the function y = x lnx. Let u = x and v = lnx. Therefore,

u1 = 1, ur = 0 for r = 2, 3, . . . , n

and vr =
(−1)r−1(r − 1)!

xr
for r = 1, 2, . . . , n.

(3.26)

Therefore, by using the Libnitz’s Theorem, we have

yn = (uv)n =

(
n

0

)
unv +

(
n

1

)
un−1v1 +

(
n

2

)
un−2v2 · · ·+

(
n

n− 1

)
u1vn−1 +

(
n

n

)
uvn

=

(
n

n− 1

)
u1vn−1 +

(
n

n

)
uvn ( Using (3.26))

= n · 1 · (−1)n−2(n− 2)!

xn−1
+ 1 · x · (−1)n−1(n− 1)!

xn

=
(−1)n−2(n− 2)!

xn−1
[n− (n− 1)]

=
(−1)n−2(n− 2)!

xn−1

Note. We can also solve this example by choosing u = lnx and v = x.

Example 3.17. Consider the function y = x2 cos 3x. Let u = cos 3x and v = x2. There-
fore,

ur = 3r cos
(rπ
2

+ 3x
)

for r = 1, 2, . . . , n.

v1 = 2x, v2 = 2, vr = 0 for r = 3, 4, . . . n
(3.27)

Therefore, by Libnitz’s Theorem, we have

yn = (uv)n =

(
n

0

)
unv +

(
n

1

)
un−1v1 +

(
n

2

)
un−2v2 · · ·+

(
n

n− 1

)
u1vn−1 +

(
n

n

)
uvn

=

(
n

0

)
unv +

(
n

1

)
un−1v1 +

(
n

2

)
un−2v2 ( Using (3.27))

= 1 · 3n cos
(nπ

2
+ 3x

)
· x2 + n · 3n−1 cos

(
(n− 1)π

2
+ 3x

)
· 2x

+
n(n− 1)

2
· 3n−2 cos

(
(n− 2)π

2
+ 3x

)
· 2

= 3n−2

[
9x2 cos

(nπ
2

+ 3x
)
+ 6nx cos

(
(n− 1)π

2
+ 3x

)
+n(n− 1) cos

(
(n− 2)π

2
+ 3x

)]
Note. We can also solve this example by choosing u = x2 and v = cos 3x.

In-text Exercise 3.4. Find the nth derivative of following functions:

1. y = x2e3x
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2. y = x3 cosx

Example 3.18. By using the Leibnitz’s Theorem, prove that

x2yn+2 + (2n+ 1)xyn+1 + (n2 + 1)yn = 0,

where y = a cos(lnx) + b sin(lnx).

Solution. Differentiating y with respect to x, we get

y1 = −a sin(lnx) · 1
x
+ b cos(lnx)

1

x
=⇒ xy1 = −a sin(lnx) + b cos(lnx)

Differentiating both sides with respect to x, we have

xy2 + y1 = −a cos(lnx) · 1
x
− b sin(lnx) · 1

x
=⇒ x2y2 + xy1 = −a cos(lnx)− b sin(lnx)

=⇒ x2y2 + xy1 + y = 0

We now differentiate the above equation n times. To differentiating the product terms x2y2
and xy1, we use Leibnitz’s Theorem. Note that yn+2 = y2+n is the nth derivative of y2. We
obtain [(

n

0

)
yn+2 · x2 +

(
n

1

)
yn+1 · 2x+

(
n

2

)
yn · 2

]
+

[(
n

0

)
yn+1 · x+

(
n

1

)
yn · 1

]
+ yn = 0

=⇒ x2yn+2 + 2nxyn+1 + n(n− 1)yn + xyn+1 + nyn + yn = 0

=⇒ x2yn+2 + (2n+ 1)xyn+1 + (n2 + 1)yn = 0

Example 3.19. For the function y = sin−1 x, prove that

(1− x)2yn+2 − (2n+ 1)xyn+1 − n2yn = 0.

Solution. Differentiating y = sin−1 x with respect to x we have,

y1 =
1√

1− x2

=⇒ y21 =
1

1− x2

=⇒ (1− x2)y21 = 1

Again differentiating the above equation with respect to x, we get

− 2xy21 + (1− x2) · 2y1y2 = 0

=⇒ (1− x2)y2 − xy1 = 0 (Dividing both sides by 2y1)
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Now, differentiating n times by using the Leibnitz’s Theorem, we get[(
n

0

)
yn+2 · (1− x2) +

(
n

1

)
yn+1 · (−2x) +

(
n

2

)
yn · (−2)

]
−
[(
n

0

)
yn+1 · x+

(
n

1

)
yn · 1

]
= 0

=⇒
[
(1− x2) · yn+2 + n · (−2x) · yn+1 +

n(n− 1)

2
· (−2) · yn

]
− [x · yn+1 + n · 1 · yn] = 0

=⇒ (1− x2)yn+2 − 2nxyn+1 − n(n− 1)yn − xyn+1 − nyn = 0

=⇒ (1− x2)yn+2 − (2n+ 1)xyn+1 − n2yn = 0

In-text Exercise 3.5. Solve the following questions:

1. If y = tan−1 x, show that

(1− x)2yn+2 + 2(n+ 1)xyn+1 + n(n+ 1)yn = 0.

2. If y = em sin−1 x, show that

(1− x)2yn+2 − (2n+ 1)xyn+1 − (n2 +m2)yn = 0.

3.6 Summary
In this lesson we have discussed the following points:

1. If the function y = f(x) is differentiable successively, then its successive derivatives
are denoted as:

First derivative: f
′
(x) or y

′
(x) or y1 or

dy

dx
or Dy

Second derivative: f
′′
(x) or y

′′
(x) or y2 or

d2y

dx2
or D2y

Third derivative: f
′′′
(x) or y

′′′
(x) or y3 or

d3y

dx3
or D3y

...

nth derivative: f (n)(x) or y(n)(x) or yn or
dny

dxn
or Dny

2. nth derivative of some well known functions are as follows:

(i)
dn

dxn
(ax+ b)m =

m!

(m− n)!
an(ax+ b)m−n, m ≥ n,m > 0.

(ii)
dn

dxn

(
1

ax+ b

)
=

(−1)n n! an

(ax+ b)n+1
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(iii)
dn

dxn
ln(ax+ b) =

(−1)n−1 (n− 1)! an

(ax+ b)n

(iv)
dn

dxn
amx = mn (ln a)n amx

(v)
dn

dxn
emx = mnemx

(vi)
dn

dxn
sin(ax+ b) = an sin

(nπ
2

+ ax+ b
)

(vii)
dn

dxn
cos(ax+ b) = an cos

(nπ
2

+ ax+ b
)

(viii)
dn

dxn
eax sin(bx + c) = rneax sin(bx + c + nθ), where r =

√
a2 + b2 and θ =

tan−1

(
b

a

)
(ix)

dn

dxn
eax cos(bx + c) = rneax cos(bx + c + nθ), where r =

√
a2 + b2 and θ =

tan−1

(
b

a

)
3. nth derivative of a rational function can be calculated with the help of partial fractions

and De Moivre’s theorem. We can take help of following table to calculate partial
fractions:

S.N. Rational Fraction Partial Fraction Form

1.
ax+ b

(x− p)(x− q)

A

x− p
+

B

x− q

2.
ax+ b

(x− p)2
A

x− p
+

B

(x− p)2

3.
ax2 + bx+ c

(x− p)(x− q)(x− r)

A

x− p
+

B

x− q
+

C

x− r

4.
ax2 + bx+ c

(x− p)2(x− q)

A

x− p
+

B

(x− p)2
+

C

x− q

5.
ax2 + bx+ c

(x− p)(x2 + qx+ r)

A

x− p
+

Bx+ C

x2 + qx+ r

where A,B and C are constants.

4. Leibnitz’s Theorem: If u and v are functions of x having n successive derivatives,
then

(uv)n =

(
n

0

)
unv +

(
n

1

)
un−1v1 +

(
n

2

)
un−2v2 · · ·+

(
n

r

)
un−rvr + · · ·

+

(
n

n− 1

)
u1vn−1 +

(
n

n

)
uvn
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where (
n

r

)
=

n!

r!(n− r)!
, for r = 0, 1, 2, . . . , n.

3.7 Self-Assessment Exercises

1. Find the nth derivative of

(i) y = sin3 x

(ii) y = sinx sin 2x sin 3x

(iii) y = sin2 x cosx

(iv) y = ex cosx sinx

(v) y = ex sin2 x

(vi) y =
x

(x− 1)(2x+ 7)

(vii) y =
x2 + 1

(x− 1)(x2 − 4)

(viii) y = tan−1 x

2. Show that

dn

dxn

(
lnx

x

)
=

(−1)n n!

xn+1

[
lnx− 1− 1

2
− 1

3
− · · · − 1

n

]
.

3. If y = ln
(
x+

√
1 + x2

)
, show that

(i) (1 + x2)y2 + xy1 = 0,

(ii) (1 + x2)yn+2 + (2n+ 1)xyn+1 + n2yn = 0.

4. If y = em cos−1 x, show that

(1− x2)yn+2 − (2n+ 1)xyn+1 − (n2 +m2)yn = 0.

5. If y = (sin−1 x)2, show that

(i) (1− x)2y2 − xy1 − 2 = 0,

(ii) (1− x)2yn+2 − (2n+ 1)xyn+1 − n2yn = 0.
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3.8 Solutions to In-text Exercises
Exercise 3.1

1. 12 [(1− 18x6) cos(2x3)− 18x3 sin(2x3)]

Exercise 3.2

1. 5n n!

2.
(−1)n+2 (n+ 1)! 2n

(2x+ 3)n+2

3. 2ne2x+3

4. 2n−1 cos
(nπ

2
+ 2x

)
5. 10n/2 sin(3x+ n tan−1 3)

Exercise 3.3

1.
(−1)n n!

2

[
9 · 2n

(2x+ 3)n+1
− 8

(x+ 2)n+1

]

2.
(−1)n n! sin(n+ 1)θ

arn+1
, where r =

√
a2 + b2 and θ = tan−1

(
b
a

)
.

Exercise 3.4

1. 3n−2e3x [9x2 + 6nx+ n(n− 1)]

2. x3 cos
(
x+

nπ

2

)
+3nx3 cos

(
x+

(n− 1)π

2

)
+3n(n−1)x cos

(
x+

(n− 2)π

2

)
+

n(n− 1)(n− 2) cos

(
x+

(n− 3)π

2

)

3.9 Suggested Readings
1. Narayan, S. & Mittal, P. K.(2019). Differential Calculus. S. Chand Publishing.
2. Anton, H., Bivens, I. C., & Davis, S. (2015). Calculus: Early Transcendentals. John
Wiley & Sons.
3. Singh, J.P. (2017). Calculus , 2nd Edition, Ane Books Pvt Ltd.
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4.1 Learning Objectives
The learning objectives of this lesson are to:

• understand the concept of partial differentiation.

• learn to determine the partial derivatives of various functions.

• learn the geometric interpretation of partial derivatives.

• use the Euler’s Theorem on homogeneous functions to solve various problems.

76
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4.2 Introduction
In this lesson, we will extend the concept of differentiation of function of a single variable
to function of several variables. If a function of more than one variable is differentiated
with respect to one independent variable while keeping other variables as constants, the
derivative we obtain is known as a partial derivative. Partial derivatives have application in
finding maxima or minima of functions of several variables. For the limiting scope of this
book, we will discuss mainly function of two variables. We will also discuss the Euler’s
Theorem on homogeneous function that displays relation between the dependent variable,
independent variable, the partial derivatives of the dependent variable and the order of the
homogeneous function in consideration.

4.3 Function of Two Variables
We are already familiar with a function of a single variable. We now define functions of
two variables. However, the definition can be extended to the functions of more than two
variables.

Definition 4.1. Let D be a subset of R2 ≡ R × R = {(x, y) : x, y ∈ R}}. A real valued
function f on D is a rule that assigns a unique real number z = f(x, y) to each element
(x, y) in D. Here

(i) D is called the domain of the function f.

(ii) The set {f(x, y) : (x, y) ∈ D}is called the range set of f.

(iii) z is the dependent variable and x and y are the independent variables.

Note. The graph of a function of two variables is called a surface.

Example 4.1. Following are some illustrations of functions of two variables:

1. z = f(x, y) = x2 + y2 with domain D = {(x, y) : −3 ≤ x ≤ 3,−4 ≤ y ≤ 4}.

Figure 4.1: Graph of f(x, y) = x2 + y2.
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2. z = f(x, y) = 2 sinx+ sin y with domain D = {(x, y) : −2π ≤ x, y ≤ 2π} .

Figure 4.2: Graph of f(x, y) = 2 sinx+ sin y.

4.4 Partial Derivatives

4.4.1 Partial Derivatives of Function of Two Variables
Consider z = f(x, y) be a function of two variables x and y. If we treat y as a constant,
then z = f(x, y) can be considered as a function of x alone and we can talk about the
derivative of z = f(x, y) with respect to x (keeping y as a constant). Similarly, we can also
talk about the derivative of z = f(x, y) with respect to y (keeping x as a constant)

Definition 4.2. Let z = f(x, y) be a function of two variables x and y. We define

(i) The partial derivative of z = f(x, y) with respect to x at the point (x, y) = (a, b) as

∂f

∂x

∣∣∣∣
(a,b)

= fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
, (4.1)

provided the limit exists.

(ii) The partial derivative of z = f(x, y) with respect to y at the point (x, y) = (a, b) as

∂f

∂y

∣∣∣∣
(a,b)

= fy(a, b) = lim
k→0

f(a, b+ k)− f(a, b)

k
, (4.2)

provided the limit exists.

Example 4.2. Consider the function

f(x, y) = 2x2 + 5xy + y2.

Find the partial derivatives fx(1, 3) and fy(1, 3).
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Solution. Since
f(x, y) = 2x2 + 5xy + y2.

Therefore, we have

fx(1, 3) = lim
h→0

f(1 + h, 3)− f(1, 3)

h

= lim
h→0

[2(1 + h)2 + 5 · (1 + h) · 3 + 32]− [2 · 12 + 5 · 1 · 3 + 32]

h

= lim
h→0

2h2 + 19h

h
= lim

h→0
(2h+ 19)

= 19

Alternately, to obtain fx(1, 3), we treat y as a constant in f(x, y) and differentiate it with
respect to x. Therefore,

fx(x, y) = 4x+ 5y,

=⇒ fx(1, 3) = 4 · 1 + 5 · 3 = 19.

Similarly,

fy(1, 3) = lim
k→0

f(1, 3 + k)− f(1, 3)

k

= lim
h→0

[2 · 12 + 5 · 1 · (3 + k) + (3 + k)2]− [2 · 12 + 5 · 1 · 3 + 32]

k

= lim
k→0

k2 + 11k

k
= lim

k→0
(k + 11)

= 11

Alternately, to obtain fy(1, 3), we treat x as a constant in f(x, y) and differentiate it with
respect to y. Therefore,

fy(x, y) = 5x+ 2y,

=⇒ fy(1, 3) = 5 · 1 + 2 · 3 = 11.

Note. We note the following:

1. Equations (4.1) and (4.2) define the partial derivatives of f at the point (a, b). If the
partial derivative of f with respect to x (or y) exists at all points of the domain, then
we define

(i) The partial derivative of z = f(x, y) with respect to x as

∂f

∂x

∣∣∣∣
(x,y)

= fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
, (4.3)
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(ii) The partial derivative of z = f(x, y) with respect to y

∂f

∂y

∣∣∣∣
(x,y)

= fy(x, y) = lim
k→0

f(x, y + k)− f(x, y)

k
, (4.4)

where f, fx and fy have common domain.

2. The derivatives in (4.3) and (4.4) are called first order partial derivatives.

Example 4.3. Consider the function f(x, y) = xex
2+y3 + y2. Therefore,

fx(x, y) =
d

dx
f(x, y)

∣∣∣∣
y=constant

=
d

dx

[
xex

2+y3 + y2
]∣∣∣∣

y=constant

= ex
2+y3 + xex

2+y3 · 2x+ 0

= (1 + 2x2)ex
2+y3

and fy(x, y) =
d

dy
f(x, y)

∣∣∣∣
x=constant

=
d

dy

[
xex

2+y3 + y2
]∣∣∣∣

x=constant

= xex
2+y3 · 3y2 + 2y

= 3xy2ex
2+y3 + 2y

In-text Exercise 4.1.

1. Calculate fx(x, y) and fy(x, y) for the following function:

(i) f(x, y) = (x2 + y2) sin(x3 − y3)

(ii) f(x, y) = ln(x2 + y2 + x)

2. Find
∂z

∂x
and

∂z

∂y
for the function z given by the equation

yz − lnx = x+ y.

[Hint: Differentiate the given equation with respect to x, treating y as a constant to

obtain
∂z

∂x
. Similarly, obtain

∂z

∂y
by differentiating the given equation with respect to

y by treating x as a constant. ]

4.4.2 Geometric Interpretation of Partial Derivatives
We have studied earlier that for a function of single variable y = f(x), the derivative of
f(x) at the point x = a

(
namelyf ′

(a)
)

is the slope of the tangent to curve of y = f(x) at
x = a. In a similar manner, we can also relate partial derivatives to slope of the tangents.
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Let S be the surface representing the graph of z = f(x, y) in Figure 4.3 and P (a, b, c)
be the point on the surface where c = f(a, b). In this figure C1 represents the curve
z = f(x, b), which is the intersection of the surface S with the vertical plane y = b.
Then it represents a function of the single variable x. Let us denote it by p(x). That is
p(x) = f(x, b). Therefore, fx(a, b) = p

′
(a) is the slope of the tangent T1 to the curve C1 at

the point P .
Similarly C2 represents the curve z = f(a, y), which is the intersection of the surface

S with the horizontal plane x = a. Then it represents a function of the single variable y.
Let us denote it by q(y). That is q(y) = f(a, y). Therefore, fy(a, b) = q

′
(b) is the slope of

the tangent T2 to the curve C2 at the point P .

In short,

1. fx(a, b) =
∂f

∂x
(a, b) represents the slope of the tangent line to the intersection of the

graph of f with the plane y = b at the point (a, b).

2. fy(a, b) =
∂f

∂y
(a, b) represents the slope of the tangent line to the intersection of the

graph of f with the plane x = a at the point (a, b).

Figure 4.3: Intersection of planes and surface.

4.4.3 Partial Derivative of Function of Three Variables

Let us consider z = f(x, y, t) be function of three variables x, y and t. Then the partial
derivative of f with respect to x (or y or z) is calculated using differentiating the function
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f with respect to x (or y or z) while treating the other two variables as constants. The three
first order partial derivatives are denoted by

∂f

∂x
,

∂f

∂y
and

∂f

∂t
.

Example 4.4. Consider the function

f(x, y, t) = x2y + xyt+ xt3 + yt+ x3 sin t.

We have

∂f

∂x
=

∂

∂x

(
x2y + xyt+ xt3 + yt+ x3 sin t

)
,

= 2xy + yt+ t3 + 3x2 sin t,

∂f

∂y
=

∂

∂y

(
x2y + xyt+ xt3 + yt+ x3 sin t

)
,

= x2 + xt+ t,

and
∂f

∂t
=

∂

∂t

(
x2y + xyt+ xt3 + yt+ x3 sin t

)
,

= xy + 3xt2 + y + x3 cos t.

In-text Exercise 4.2. Calculate
∂f

∂x
,
∂f

∂y
and

∂f

∂t
for the following functions:

1. f(x, y) = x2 + y2 + xyt+ lnxy

2. f(x, y) = ext + sin(x2y + y2t+ xt2)

3. f(x, y) =
xy2 + 2t

x+ t

4.4.4 Partial Derivatives of Higher Order
For a functionz = f(x, y) of two variable x and y , the partial derivatives fx and fy may be
constants or functions of x and y. So these functions can also have partial derivatives with
respect to x and y. In this way, we obtain the second order partial derivatives of f with
respect to x and y, defined as follows:

(i) fxx = (fx)x =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
(Differentiating with respect to x two times

treating y as a constant)

(ii) fyy = (fy)y =
∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2
(Differentiating with respect to y two times treating

x as a constant)

(iii) fxy = (fx)y =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
(First differentiating with respect to x treating y

as a constant, then with respect to y treating x as a constant)
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(iv) fyx = (fy)x =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
(First differentiating with respect to y treating x

as a constant, then with respect to x treating y as a constant)

Theorem 4.1 (Equality of Partial Derivatives). Let f be a function of two variables x
and y having continuous second order partial derivatives fxy and fyx, then

fxy = fyx.

Similarly, we can also define third order, forth order and higher order partial derivatives
like

(i) fxxx =
∂

∂x

(
∂2f

∂x2

)
=
∂3f

∂x3
,

(ii) fyyx =
∂

∂x

(
∂2f

∂y2

)
=

∂3f

∂x∂y2
,

(iii) fxyx =
∂

∂x

(
∂f

∂y∂x

)
=

∂3f

∂x∂y∂x
and so on.

Example 4.5. Consider the function

f(x, y) = x3y3 + 2x2y + 4xy2 + 2x+ 3y − 1.

We have
∂f

∂x
= 3x2y3 + 4xy + 4y2 + 2

and
∂f

∂y
= 3x3y2 + 2x2 + 8xy + 3.

Therefore,

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x

(
3x2y3 + 4xy + 4y2 + 2

)
= 6xy3 + 4y,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
=

∂

∂y

(
3x2y3 + 4xy + 4y2 + 2

)
= 9x2y2 + 4x+ 8y,

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
=

∂

∂y

(
3x3y2 + 2x2 + 8xy + 3

)
= 6x3y + 8x,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂x

(
3x3y2 + 2x2 + 8xy + 3

)
= 9x2y2 + 4x+ 8y.

Here, we note that
∂2f

∂y∂x
=

∂2f

∂x∂y
.

Example 4.6. Consider the function f(x, y) = xex
2+y3 + y2. Since we have already calcu-

lated

fx(x, y) = (1 + 2x2)ex
2+y3

and fy(x, y) = 3xy2ex
2+y3 + 2y.
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Therefore,

fxy =
∂

∂y

(
(1 + 2x2)ex

2+y3
)

= (1 + 2x2)ex
2+y3 · 3y2

= 3(1 + 2x2)y2ex
2+y3

and fyx =
∂

∂x

(
3xy2ex

2+y3 + 2y
)

= 3y2ex
2+y3 + 3xy2 · ex2+y3 · 2x

= 3(1 + 2x2)y2ex
2+y3

Here also we note that fxy = fyx.

4.5 Homogeneous Functions
Definition 4.3 (Homogeneous Function). A function f of two variables x and y is said to
be a homogeneous function of degree (order) r ∈ R, if

f(αx, αy) = αrf(x, y), α ̸= 0 (4.5)

or
f(x, y) = xrg

(y
x

)
(4.6)

where g is a function of
y

x
.

Example 4.7. Consider the function

f(x, y) = x5 + 3x2y3 + 6xy4 − 4y5.

Therefore, for α ̸= 0

f(αx, αy) = (αx)5 + 3(αx)2(αy)3 + 6(αx)(αy)4 − 4(αy))5

= α5
(
x5 + 3x2y3 + 6xy4 − 4y5

)
= α5f(x, y).

Therefore, f(x, y) = x5 + 3x2y3 + 6xy4 − 4y5 is a homogeneous function of degree 5.

Alternately,

f(x, y) = x5 + 3x2y3 + 6xy4 − 4y5

= x5
[
1 + 3

y3

x3
+ 6

y4

x4
− 4

y5

x5

]
= x5

[
1 + 3

(y
x

)3
+ 6

(y
x

)4
− 4

(y
x

)5]
= x5g

(y
x

)
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where g
(y
x

)
= 1+3

(y
x

)3
+6

(y
x

)4
− 4

(y
x

)5
. Therefore, the given function is a homo-

geneous function of degree 5.

Example 4.8. Let f(x, y) =
x2 + y2

x3 − y3
. We can write

f(x, y) =
x2 + y2

x3 − y3

=

x2
(
1 +

y2

x2

)
x3
(
1− y3

x3

)

= x−1
1 +

(y
x

)2
1−

(y
x

)3
= x−1g

(y
x

)

where g
(y
x

)
=

1 +
(y
x

)2
1−

(y
x

)3 . Hence, the given function is homogeneous of degree −1.

In-text Exercise 4.3. Verify that the following functions are homogeneous and find out the
degree:

1. f(x, y) =
x3 + y3

x− y

2. g(x, y) =
3
√
x2 − y2

x2 + y2

4.5.1 Euler’s Theorem on Homogeneous Functions
Euler’s Theorem displays a relation between the dependent variable, the independent vari-
ables, the partial derivatives of dependent variable with respect to the independent variables
and the degree (order) of the homogeneous function.

Theorem 4.2 (Euler’s Theorem). If z = f(x, y) is a homogeneous function of two vari-
ables x and y of degree r, then

x
∂f

∂x
+ y

∂f

∂y
= rf(x, y). (4.7)

Proof. Since z = f(x, y) is a homogeneous function of degree r. Therefore,

f(x, y) = xrg
(y
x

)
. (4.8)
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where g is a function of
y

x
. Therefore, we have

∂f

∂x
= rxr−1g

(y
x

)
+ xrg

′
(y
x

)
·
(
−y
x2

)
= rxr−1g

(y
x

)
− xr−2yg

′
(y
x

)
(4.9)

and
∂f

∂y
= xrg

′
(y
x

)
·
(
1

x

)
= xr−1g

′
(y
x

)
(4.10)

Therefore, using (4.9) and (4.10), we have

x
∂f

∂x
+ y

∂f

∂y
= x ·

[
rxr−1g

(y
x

)
− xr−2yg

′
(y
x

)]
+ y · xr−1g

′
(y
x

)
= rxrg

(y
x

)
− xr−1yg

′
(y
x

)
+ xr−1yg

′
(y
x

)
= rxrg

(y
x

)
= rf(x, y)

Example 4.9. Verify that the function

f(x, y) =
x2 + y2

x3 − y3

is a homogeneous function of x and y and it satisfies the Euler’s Theorem.

Solution. We have

f(x, y) =
x2 + y2

x3 − y3
=

x2
[
1 +

(y
x

)2]
x3
[
1−

(y
x

)3]

=
1 +

(y
x

)2
x

[
1−

(y
x

)3]

= x−1
1 +

(y
x

)2
1−

(y
x

)3
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Therefore, f is a homogeneous function of degree −1. Now we have

∂f

∂x
=

∂

∂x

(
x2 + y2

x3 − y3

)
=

(x3 − y3) · 2x− (x2 + y2) · 3x2

(x3 − y3)2

=
2x4 − 2xy3 − 3x4 − 3x2y2

(x3 − y3)2

=
−x4 − 2xy3 − 3x2y2

(x3 − y3)2

and

∂f

∂y
=

∂

∂y

(
x2 + y2

x3 − y3

)
=

(x3 − y3) · 2y − (x2 + y2) · (−3y2)

(x3 − y3)2

=
2x3y − 2y4 + 3x2y2 + 3y4

(x3 − y3)2

=
2x3y + 3x2y2 + y4

(x3 − y3)2

Therefore,

x
∂f

∂x
+ y

∂f

∂y
= x

[
−x4 − 2xy3 − 3x2y2

(x3 − y3)2

]
+ y

[
2x3y + 3x2y2 + 2y4

(x3 − y3)2

]
=

−x5 − 2x2y3 − 3x3y2 + 2x3y2 + 3x2y3 + y5

(x3 − y3)2

=
−x5 − x3y2 + x2y3 + y5

(x3 − y3)2

=
x2(y3 − x3) + y2(y3 − x3)

(x3 − y3)2

=
(y3 − x3)(x2 + y2)

(x3 − y3)2

=
−(x2 + y2)

(x3 − y3)

= (−1)f(x, y)

Hence, the Euler’s Theorem is satisfied.

In-text Exercise 4.4. Verify Euler’s Theorem for the following functions:

1. f(x, y) = x ln
(y
x

)
2. f(x, y) = 9x3 + 5x2y + y3
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Example 4.10. For z = tan−1

(
x3 + y3

x+ y

)
, prove that

x
∂z

∂x
+ y

∂z

∂y
= sin 2z.

Solution. We have

z = tan−1

(
x3 + y3

x+ y

)

=⇒ tan z =
x3 + y3

x+ y
=

x3
[
1 +

(y
x

)3]
x
[
1 +

y

x

] = x2 ·

[
1 +

(y
x

)3]
[
1 +

y

x

] . (4.11)

Let tan z = u, then

u = x2 ·

[
1 +

(y
x

)3]
[
1 +

y

x

]
is a homogeneous function of degree 2. Therefore, by the Euler’s Theorem

x
∂u

∂x
+ y

∂u

∂y
= 2 · u (4.12)

Also,
∂u

∂x
=
∂u

∂z
· ∂z
∂x

= sec2 z
∂z

∂x

and
∂u

∂y
=
∂u

∂z
· ∂z
∂y

= sec2 z
∂z

∂y

(4.13)

Therefore, from (4.12) and (4.13), we get

x · sec2 z ∂z
∂x

+ y · sec2 z ∂z
∂y

= 2 tan z

=⇒ x
∂z

∂x
+ y

∂z

∂y
= 2

tan z

sec2 z

= 2 sin z cos z

= sin 2z.

Example 4.11. For z = e
x2+y2

x+y , prove that

x
∂z

∂x
+ y

∂z

∂y
= z ln z.
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Solution. We have

z = e
x2+y2

x+y

=⇒ ln z =
x2 + y2

x+ y
= x ·

[
1 +

(y
x

)2]
[
1 +

y

x

] . (4.14)

Let ln z = u, then

u = x ·

[
1 +

(y
x

)2]
[
1 +

y

x

]
is a homogeneous function of degree 1. Therefore, by the Euler’s Theorem

x
∂u

∂x
+ y

∂u

∂y
= 1 · u (4.15)

Also,
∂u

∂x
=
∂u

∂z
· ∂z
∂x

=
1

z

∂z

∂x

and
∂u

∂y
=
∂u

∂z
· ∂z
∂y

=
1

z

∂z

∂y

(4.16)

Therefore, from (4.15) and (4.16), we get

x · 1
z

∂z

∂x
+ y · 1

z

∂z

∂y
= ln z

=⇒ x
∂z

∂x
+ y

∂z

∂y
= z ln z

In-text Exercise 4.5.

1. If z = sin−1

(
x3 + y3

x+ y

)
, show that x

∂z

∂x
+ y

∂z

∂y
= 2 tan z.

2. If z = ln

(
x5 + y5

x3 + y3

)
, show that x

∂z

∂x
+ y

∂z

∂y
= 2.

4.6 Summary
In this lesson we have discussed the following points:

1. Let D be a subset of R2 ≡ R × R = {(x, y)|x, y ∈ R}}. A real valued function f
on D is a rule that assigns a unique real number z = f(x, y) to each element (x, y)
in D. Here

(i) D is called the domain of the function f.
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(ii) The set {f(x, y) : (x, y) ∈ D} is called the range set of f.

(iii) If z = f(x, y), then z is the dependent variable and x and y are the independent
variables.

2. The graph of a function of two variables represents a surface.

3. Let z = f(x, y) be a function of two variables x and y. We define

(i) The partial derivative of z = f(x, y) with respect to x at the point (x, y) = (a, b)
as

∂f

∂x

∣∣∣∣
(a,b)

= fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
, (4.17)

provided the limit exists.

(ii) The partial derivative of z = f(x, y) with respect to y at the point (x, y) = (a, b)
as

∂f

∂y

∣∣∣∣
(a,b)

= fy(a, b) = lim
k→0

f(a, b+ k)− f(a, b)

k
, (4.18)

provided the limit exists.

4. Geometric Interpretation of Partial Derivative:

(i) fx(a, b) =
∂f

∂x
(a, b) represents the slope of the tangent line to the intersection

of the graph of f with the plane y = b at the point (a, b).

(ii) fy(a, b) =
∂f

∂y
(a, b) represents the slope of the tangent line to the intersection

of the graph of f with the plane x = a at the point (a, b).

5. The second order partial derivatives of f with respect to x and y are defined as
follows:

(i) fxx = (fx)x =
∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2
(Differentiating with respect to x two times

treating y as a constant)

(ii) fyy = (fy)y =
∂

∂x

(
∂f

∂y

)
=
∂2f

∂y2
(Differentiating with respect to y two times

treating x as a constant)

(iii) fxy = (fx)y =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
(First differentiating with respect to x

treating y as a constant, then with respect to y treating x as a constant)

(iv) fyx = (fy)x =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
(First differentiating with respect to y

treating x as a constant, then with respect to x treating y as a constant)

6. Equality of second order partial derivatives: Let f be a function of two variables
x and y having continuous second order partial derivatives fxy and fyx, then

fxy = fyx.
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7. Homogeneous function:A function f of two variables x and y is said to be a homo-
geneous function of degree (order) r, r ∈ R if

f(αx, αy) = αrf(x, y), α ̸= 0

or
f(x, y) = xrg

(y
x

)
where g is a function of

y

x
.

8. Euler’s Theorem on homogeneous functions: If f(x, y) is a homogeneous function
of two variables x and y of degree r, then

x
∂f

∂x
+ y

∂f

∂y
= rf(x, y).

4.7 Self-Assessment Exercises
1. Find the partial derivatives fx and fy for the following functions:

(i) f(x, y) = 2x2y + y3 − 3xy2

(ii) f(x, y) = sin(x2 − y2) cos(x2 + y2)

(iii) f(x, y) = ee
x+xy2

(iv) f(x, y) = ln(x3 + 2x2y + y2)

(v) f(x, y) =
x1/4 + y1/4

x1/5 + y1/5

(vi) f(x, y) =
x(x3 − y3)

x3 + y3

2. Find the partial derivatives fxx, fxy, fyx and fyy for the following functions:

(i) f(x, y) = xy2 + ex+y2 sinx

(ii) f(x, y) = sin(x2 + y3) cos(x+ y)

(iii) f(x, y) =
xy + x2

x2 + xy3

(iv) f(x, y) = ln

(
x2 + y2

x+ y

)
(v) f(x, y) = esin(x+2y+xy)

3. Verify the Euler’s Theorem for the following functions:
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(i) z =
1

x2 + y2

(ii) z = x3 ln
(y
x

)
(iii) z =

x(x3 − y3)

x3 + y3

(iv) z =
x1/4 + y1/4

x1/5 + y1/5

4. Using Euler’s Theorem, show that if f(x, y) = sin−1

(
x2 + y2

x+ y

)
, then x

∂f

∂x
+y

∂f

∂y
= 0.

5. If cos z =
x+ y√
x+

√
y

, then prove that x
∂z

∂x
+ y

∂z

∂y
+

cos z

2 sin z
= 0.

6. If z = cot−1

(
x+ y√
x+

√
y

)
, then prove that x

∂z

∂x
+ y

∂z

∂y
+

sin 2z

4
= 0.

4.8 Solutions to In-text Exercises
Exercise 4.1

1. (i) fx(x, y) = 2x sin(x3 − y3) + 3x2(x2 + y2) cos(x3 − y3),
fy(x, y) = 2y sin(x3 − y3)− 3y2(x2 + y2) cos(x3 − y3).

(ii) fx(x, y) =
2x+ 1

x2 + y2 + x
, fy(x, y) =

2y

x2 + y2 + x

2.
∂z

∂x
=
x2 + 1

xy
,
∂z

∂x
=

1− z

y
.

Exercise 4.2

1. fx(x, y, t) = 2x+ yt+
1

x
, fy(x, y, t) = 2y + xt+

1

y
, ft(x, y, t) = xy

2. fx(x, y, t) = text + (2xy + t2) cos(x2y + y2t+ xt2),
fy(x, y, t) = (x2 + 2yt) cos(x2y + y2t+ xt2),
ft(x, y, t) = xext + (y2 + 2xt) cos(x2y + y2t+ xt2).

3. fx(x, y, t) =
t(y2 − 2)

(x+ t)2
, fy(x, y, t) =

2xy

(x+ t)2
, ft(x, y, t) =

x(2− y2)

(x+ t)2
.

Exercise 4.3

1. Degree = 2

2. Degree =
−4

3
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4.9 Suggested Readings
1. Narayan, S. & Mittal, P. K.(2019). Differential Calculus. S. Chand Publishing.
2. Anton, H., Bivens, I. C., & Davis, S. (2015). Calculus: Early Transcendentals. John
Wiley & Sons.
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Unit-2: Mean Value Theorem

4.9.1 Unit Overview
This unit on Mean Value Theorem is in continuation to the Unit-1. The topics discussed
in Unit-1, such as limits, continuity and differentiability help us to prove important Mean
Value Theorems, which have wide range of applications almost in every field. The other
topics discussed such as Indeterminate forms, extrema of a function and Taylor’s series
expansions add to the values of this unit. This unit is further divided into four lesson.

In Lesson 5, we have discussed the two mean theorems, namely Rolle’s Theorem and La-
grange’s Mean Value Theorem. Basic applications of these theorems to establish some
important inequalities and to check the monotonic behavior of functions are discussed.

In Lesson 7, the concept of convergence of a sequence and series and the concept of ex-
trema of a function are discussed with applications.

In Lesson 8, we introduce some indeterminate forms on limits. The study of these indeter-
minate forms help us to evaluate many limits which are otherwise difficult to be evaluated.

In Lesson 6, we discussed Cauchy’s Mean Value Theorem and the Taylor’s Theorem. Tay-
lor’s series expansion and Maclaurin’s series expansions of some functions are also dis-
cussed in this lesson.

The topics discussed in the above lessons are supported by examples, in-text exercises and
self-assessment exercises.
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5.1 Learning Objectives
The learning objectives of this lesson are to:

• learn Rolle’s Theorem and its applications.

• learn Lagrange’s Mean Value Theorem and its applications.

• understand the concept of monotonicity of functions.
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5.2 Introduction
In the previous lessons, we have learnt about the concept of continuity and differentiabil-
ity of functions. In this lesson, we will learn how these concepts can be used to establish
some standard theorems named as Rolle’s Theorem and Lagrange’s Mean Value Theorem.
Rolle’s Theorem is a special case of Mean Value Theorem. We will learn about the ge-
ometrical interpretation of both these theorems. The Mean Value Theorem is one of the
important theorem in calculus, as it lays the foundation to many important results. We look
at some of its applications to check the monotonic behavior of functions and to establish
some inequalities at the end of this lesson.

5.3 Rolle’s Theorem
This theorem is named after Michel Rolle a French mathematician. It states that if any real
valued differentiable function have equal values at two distinct points, then it must have
at least one stationary point (a point at which the derivative of the function become zero)
somewhere between them.

Mathematically Rolle’s Theorem can be stated as follows:

Theorem 5.1 (Rolle’s Theorem). Let f(x) be a function defined on the closed interval
[a, b], such that

1. f(x) is continuous on the closed interval [a, b],

2. f(x) is differentiable on the open interval (a, b),

3. f(x) has same value at x = a and b i.e. f(a) = f(b),

then there exists at-least one point c in (a, b) such that f ′(c) = 0.

Proof. We know that a continuous function on a closed interval is bounded and attains its
bounds therein. Since the given function f(x) is continuous on the closed interval [a, b],
therefore it is bounded on [a, b]. Let m and M denote the bounds of f(x) on [a, b]

i.e. m ≤ f(x) ≤M ∀ x ∈ [a, b]. (5.1)

Since, f attains its bounds, so there exist points d, c in [a, b], such that

f(d) = m and f(c) =M. (5.2)

From equation (5.1) and (5.2), we get

f(d) ≤ f(x) ≤ f(c) ∀ x ∈ [a, b]. (5.3)

Case I. Let m =M.
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5.3. ROLLE’S THEOREM 97

Then from equation (5.1), we obtain f(x) = m ∀ x ∈ [a, b]. That is, f(x) is a constant
function. Therefore, f ′(x) = 0 ∀ x ∈ [a, b]. Thus, the theorem is true in this case.

Case II. Let M ̸= m.

Since f(a) = f(b) and M ̸= m, so at least one of the number M and m is different from
f(a) and f(b).
Suppose M ̸= f(a) and M ̸= f(b).
That is f(c) ̸= f(a) and f(c) ̸= f(b), then using equation (5.2) we get c ̸= a and c ̸= b,
where c ∈ [a, b].
Thus c ∈ (a, b) and so by given condition (ii), f ′(c) exists
i.e.

f ′(c) = Lf ′(c) = Rf ′(c) (5.4)

From (5.3),

f(x)− f(c) ≤ 0 ∀ x ∈ [a, b]. (5.5)

Now, Lf ′(c) = limx→c−
f(x)− f(c)

(x− c)
≤ 0, using (5.5). (Notice that x → c− ⇒ x < c,

i.e., x− c < 0. )

⇒ f ′(c) ≥ 0, using (5.4). (5.6)

Now, Rf ′(c) = limx→c+
f(x)− f(c)

x− c
≤ 0, using (5.5). (Notice that x → c+ ⇒ x > c,

i.e., x− c > 0.)

⇒ f ′(c) ≤ 0, using (5.4). (5.7)

Hence, from (5.6) and (5.7), we get f ′(c) = 0, c ∈ (a, b). This proves the theorem.

Remark. If any of the conditions of Rolle’s Theorem is not satisfied, then the conclusion
may not hold. This is illustrated in the following examples.

Example 5.1. Consider the function

f(x) =

{
2x, 0 ≤ x < 1

3, x = 1

Here, f(x) is not continuous at x = 1. Therefore, the condition (i) of the hypothesis of
Rolle’s Theorem is violated The conclusion also does not hold as f ′(x) ̸= 0 at any point
x ∈ (0, 1).

Example 5.2. Consider the function

f(x) = |x| x ∈ [−1, 1].

Here f(x) is not differentiable at 0 ∈ (−1, 1). Therefore, the condition (ii) of the hypothesis
of Rolle’s Theorem is violated The conclusion also does not hold as f ′(x) ̸= 0 at any point
x ∈ (−1, 1) excluding x = 0.
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Example 5.3. Consider the function

f(x) = x, x ∈ [1, 2].

Here, f(1) = 1 and f(2) = 2, which means f(1) ̸= f(2). Therefore, the condition (iii)
of the hypothesis of Rolle’s Theorem is violated The conclusion also does not hold as
f ′(x) = 1 ̸= 0 at any point x ∈ (1, 2).

Thus, Rolle’s Theorem does not hold true if any one of its of the condition is excluded.

5.3.1 Algebraic interpretation of Rolle’s Theorem

Algebraically, Rolle’s Theorem implies that, Between any two zeros of a function satisfying
the conditions of the Rolle’s Theorem, there exists at least one zero of its derivative.

Let y = f(x) is any function defined on closed interval [a, b] and satisfying the conditions
of the Rolle’s Theorem on [a, b] and f(a) = f(b) = 0. That is, a and b are zeroes of f(x).
Then from Rolle’s Theorem we can conclude that there exist c belongs to open interval
(a, b) such that f ′(c) = 0 or c is the zero of the function f ′(x).

5.3.2 Geometrical interpretation of Rolle’s Theorem

If y = f(x) is any real valued function defined on [a, b] such that

(i) It is continuous on [a, b] (i.e. continuous curve can be drawn from x = a to x = b.)

(ii) It is differentiable on (a, b) (i.e. unique tangent can be drawn at each point x ∈ (a, b).)

(iii) f(a) = f(b) (i.e. ordinates at the end points are equal),

then there exist at least one point P (c, f(c)), a < c < b on the curve y = f(x) such that
tangent at the point P is parallel to x-axis.
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Figure 5.1: Geometrical interpretation of Rolle’s Theorem.

Figure 5.2: Geometrical interpretation of Rolle’s Theorem

In the above figure 5.2 f ′(x) = 0 at two points x = c1 and x = c2 while, the Rolle’s
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Theorem guarantees the existence of at least one such point.

Example 5.4. Verify Rolle’s Theorem for f(x) =
√
1− x2 on the interval [−1, 1].

Solution. Given f(x) = (1− x2)
1
2 , x ∈ [−1, 1]. Therefore, f(x) is a defined real function

on [−1, 1]. To check the applicability of Rolle’s Theorem we check the validity of all the
three conditions of the hypothesis.

(i) Since f(x) is an algebraic function in x and every algebraic function is continuous.
Therefore, f(x) is continuous in [−1, 1].

(ii) Also,

f ′(x) =
1

2
(1− x2)

1
2
−1.− 2x =

−x√
1− x2

, x ∈ (−1, 1).

⇒ f(x) is differentiable on (−1, 1).

(iii) f(−1) = 0 = f(1)

Thus, f(x) satisfies all the condition of Rolle’s Theorem. Now to verify the conclusion, we
have

f ′(x) =
−x√
1− x2

, x ∈ (−1, 1)

⇒ f ′(x) = 0 at x = 0.

Therefore, there exist a point c = 0 ∈ (−1, 1) such that f ′(c) = 0. Hence, the given
function f(x) satisfies all the conditions of the hypotheses as well as the conclusion of the
Rolle’s Theorem.

Example 5.5. Verify Rolle’s Theorem for f(x) = log(x2 + 2)− log 3 in [−1, 1]

Solution. Here,

f(x) = log(x2 + 2)− log 3, x ∈ [−1, 1]

∴ f ′(x) =
2x

x2 + 2
, x ∈ (−1, 1)

Therefore

(i) f(x) is continuous on [−1, 1], as f(x) is the difference of the continuous function
log(x2 + 2) and log 3.

(ii) f(x) is derivable on (−1, 1) and f ′(x) =
2x

x2 + 2
.

(iii) f(−1) = log(1 + 2)− log 3 = 0 = f(1)
∴ f(−1) = f(1).
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Thus, all the conditions of Rolle’s Theorem are satisfied. Hence, there exists at-least one
point c ∈ (−1, 1), such that f ′(c) = 0. We have

f ′(x) =
2x

x2 + 2

f ′(c) =
2c

c2 + 2
= 0 for c = 0 ∈ (−1, 1).

Hence, Rolle’s Theorem is verified.

Example 5.6. Show that between any two roots of the equation ex cosx = 1, there exists
at least one root of the equation ex sinx− 1 = 0.

Solution. Let α and β be the two roots of ex cosx = 1. Let us define a function f(x) as

f(x) = e−x − cosx for all x ∈ [α, β]. (5.8)

Then

1. f(x) is continuous on [α, β], as cosx and e−x are continuous on [α, β].

2. f(x) is differentiable on [α, β] and

3. f(α) = f(β) = 0, from (5.8).

Also f ′(x) = −e−x + sinx. Thus, all the conditions of Rolle’s Theorem are satisfied by
f(x) on [α, β]. Therefore, there exist at least one c ∈ (α, β) such that f ′(c) = 0.

i.e., sin c− e−c = 0

or ec sin c− 1 = 0

i.e. c is a root of the equation ex sinx − 1 = 0. Thus, there exist at least one root of the
equation ex sinx− 1 = 0 in [α, β].

In-text Exercise 5.1. Solve the following questions:

1. Discuss the applicability of Rolle’s Theorem for the following functions on the indi-
cated intervals:

(i) f(x) = 2x2 − 5x+ 3 on [1, 3]

(ii)

f(x) =

{
−4x+ 5 if 0 ≤ x ≤ 1
2x− 3 if 1 < x ≤ 2

on [0, 2].

(iii) f(x) = ex(sinx− cosx) on
[
π
4
, 5π

4
.
]

(iv) f(x) = |x− 1| on [−2, 2].

2. Using Rolle’s Theorem, find a point on the curve y = 16 − x2, x ∈ [−1, 1], where
the tangent is parallel to x- axis.

3. If the Rolle’s Theorem holds for the function f(x) = x3 + bx2 + cx, x ∈ [1, 2] at the

point
4

3
. Find the values of b and c.
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5.4 Lagrange’s Mean Value Theorem
Lagrange’s Mean Value Theorem (LMV Theorem) is a further extension of Rolle’s The-
orem. In this theorem the third condition that f(a) = f(b) is removed. It concludes that
there exists at least one point c ∈ (a, b), such that the tangent line at P (c, f(c)) on the curve
y = f(x) is parallel to the secant line joining the points A(a, f(a)) and B(b, f(b)) on the
curve. This theorem is also known as the Fundamental Mean Value Theorem. It is stated
as following:

Theorem 5.2. Let f be a function defined on the closed interval [a, b], b > a such that it
satisfies the following conditions:

(i) f(x) is continuous in closed interval [a, b],

(ii) f(x) is derivable in open interval (a, b).

Then, there exist at-least one point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Figure 5.3: Graphical representation of Lagrange’s Mean Value Theorem

Proof. Consider a function

ϕ(x) = f(x) + Ax, (5.9)

where A is a constant and we chose it in such a way that ϕ(a) = ϕ(b). Now

ϕ(a) = ϕ(b)

=⇒ f(a) + Aa = f(b) + Ab

=⇒ f(b)− f(a) = A(a− b)

=⇒ A = −
{
f(b)− f(a)

b− a

}
. (5.10)
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Now, the function ϕ(x) in (5.9), where A is given by (5.10), satisfies the conditions:

1. ϕ(x) is continuous on [a, b], as both f(x) and Ax are continuous.

2. ϕ(x) is differentiable on [a, b], as both f(x) and Ax are differentiable on (a, b) and
ϕ′(x) = f ′(x) + A.

3. ϕ(a) = ϕ(b), by the choice of A.

Thus, all the conditions of Rolle’s Theorem are satisfied by ϕ(x) on [a, b]. Hence, there
exist at-least a point c ∈ (a, b) such that ϕ′(c) = 0. Now

ϕ(x) = f(x) + Ax

=⇒ ϕ′(x) = f ′(x) + A

=⇒ ϕ′(c) = f ′(c) + A = 0 =⇒ A = −f ′(c). (5.11)

From equation (5.10) and (5.11), we get

f ′(c) =
f(b)− f(a)

b− a
.

This proves the theorem.

5.4.1 Geometrical Interpretation of Lagrange’s Mean Value Theorem
The conditions of Lagrange’s Mean Value Theorem implies that

(i) f(x) is continuous in the closed interval [a, b] That is, the curve y = f(x) is smooth
from the point A(a, f(a)) to the point B(b, f(b)) and it has no break.

(ii) f(x) is derivable in the open interval (a, b) That is, the tangent at each point of (a, b)
is unique and non-vertical.

Figure 5.4: Geometrical interpretation of Lagrange’s Mean Value Theorem
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Let the end points A(a, f(a)) and B(b, f(b)) are joined by the chord AB and it makes an
angle ψ with x-axis. Then from the triangle ARB the slope of the chord is

tanψ =
BR

AR
=
f(b)− f(a)

b− a
. (5.12)

Also from Lagrange’s Mean Value Theorem, we have

f ′(c) =
f(b)− f(a)

b− a
, c ∈ (a, b). (5.13)

Thus, from 5.12 and 5.13, we have

f ′(c) = tanψ

slope of the tangent at P (c, f(c)) = Slope of the chord (secant) AB

Hence, in geometrical form Lagrange’s Mean Value Theorem can be stated as ‘if there is
a continuous curve between the points A and B on the curve y = f(x) having a unique
tangent at each point betweenA andB, then there is at-least one point on the curve between
A and B, where the tangent is parallel to the chord AB.

Note. 1. If in the hypothesis of Lagrange’s Mean Value Theorem one more condition
is added that is the value of the function at the end points are same i.e. f(a) = f(b)
Then by the conclusion of Lagrange’s mean value theorem, there exist a point c ∈
(a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Since f(b) = f(a), therefore f ′(c) = 0 which is the conclusion of the Rolle’s Theo-
rem. Thus, Rolle’s Theorem is a special case of Lagrange’s Mean Value Theorem.

2. We also obtain from Lagrange’s Mean Value Theorem that the average rate of change
of a function on an interval is equal to the actual rate of change of the function at some
point of the interval.

3. Lagrange’s Mean Value Theorem may not hold if any one condition of the hypothesis
is not satisfied. This is illustrated in the following example.

Example 5.7. Check the validity of the Lagrange’s Mean Value Theorem for the following
function f(x), x ∈ [1, 2].

f(x) =


x2 if 1 < x < 2
2 if x = 1
1 if x = 2

Solution. Let, the Lagrange’s Mean Value theorem be applicable for the given function.
Then there exist at-least one point c in (1, 2), such that

f(2)− f(1)

2− 1
= f ′(c),
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=⇒ 1− 2

2− 1
= 2c

or

=⇒ c =
−1

2
/∈ (1, 2).

Hence, the conclusion of the Lagrange’s Mean Value theorem does not hold for the given
function. It may be noticed that the given function is not continuous at x = 1 and x = 2 as

lim
x→1+

f(x) = lim
x→1+

x2 = 1 ̸= f(1),

lim
x→2−

f(x) = lim
x→2−

x2 = 4 ̸= f(2)

Note. There may be some functions for which one or both the conditions of the hypothesis
of Lagrange’s theorem are not true but still a point c ∈ (a, b) can be obtained for which
the conclusion of the theorem holds true. In other words the conditions of the Lagrange’s
theorem are only sufficient but not necessary for the conclusion. This is illustrated in the
next example.

Example 5.8. Consider a function

f(x) =


0 if 0 ≤ x < 1/4
x if 1/4 ≤ x < 1/2
(x/2) + 1 if 1/2 ≤ x ≤ 2

Show that the function f is neither continuous in [0, 2] nor derivable in (0, 2), but at the
point x = 1/2, the conclusion of the theorem holds.

Example 5.9. Verify Lagrange’s Mean Value Theorem for f(x) = sin x in
[
π

2
,
5π

2

]
.

Solution. Here f(x) = sin x. Then f(x) is a real function defined in
[
π

2
,
5π

2

]
. Also,

(i) since, lim
x→a

f(x) = lim
x→a

sinx = sin a = f(a) ∀ a ∈
[
π

2
,
5π

2

]
. Therefore, f(x) is

continuous on
[
π

2
,
5π

2

]
.

(ii) f ′(x) = cos x for x ∈
[
π

2
,
5π

2

]
. Therefore, f(x) is derivable in

(
π
2
, 5π

2

)
.

Thus, both the conditions of Lagrange’s Mean Value Theorem are satisfied. Hence, there
exists at-least one point c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c), where a =

π

2
, b =

5π

2
(5.14)
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We have,

f(x) = sin x,

f(a) = f
(π
2

)
= sin

π

2
= 1,

f(b) = f

(
5π

2

)
= sin

5π

2
= 1,

Also f ′(x) = cos x

=⇒ f ′(c) = cos c

Therefore, from (5.14), we get

1− 1
5π
2
− π

2

= cos c

cos c = 0

c =
3π

2
∈
(
π

2
,
5π

2

)
.

Hence, Lagrange’s Mean Value Theorem is verified.

Example 5.10. Find the point ‘c’ of the Lagrange’s Mean Value Theorem if f(x) = (x −
1)(x− 2)(x− 3) and a = 0, b = 4.

Solution. Here f(x) = (x− 1)(x− 2)(x− 3) = x3 − 6x2 + 11x− 6.

(i) Since, f(x) is a polynomial in x, therefore it is continuous in [0, 4].

(ii) Also, f ′(x) = 3x2− 12x+11 which exists for all x ∈ (0, 4). Thus, f(x) is derivable
in (0, 4).

Since, both the condition of Lagrange’s Mean Value Theorem are satisfied. Hence there
must exist at-least one point c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c), where a = 0, b = 4 (5.15)

Now,

f ′(x) = 3x2–12x+ 11

=⇒ f ′(c) = 3c2–12c + 11

f(b) = f(4) = (4–1)(4− 2)(4− 3) = 3.2.1. = 6

and f(a) = f(0) = (−1)(−2)(−3) = −6.

Substituting all these values in (5.15), we get

6− (−6)

4− 0
= 3c2 − 12c+ 11

3c2 − 12c+ 8 = 0

i.e. c =
12±

√
144− 96

6
=

6± 2
√
3

3
.
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Both the above value of c lie in between (0, 4). We note that, Lagrange’s Mean Value
Theorem guarantees the existence of at least one such point. Here, we have two points for
which Lagrange’s Mean Value Theorem is satisfied.

Example 5.11. Use Lagrange’s Mean Value Theorem to determine a point on the curve
y =

√
x2 − 4 defined in [2, 4], where the tangent is parallel to the chord joining the end

points of the curve.

Solution. Given the function y = f(x) =
√
x2 − 4, it is defined for x ∈ [2, 4]. Also,

1. f(x) is continuous on [2, 4].

2. f ′(x) =
1

2
√
x2 − 4

· 2x =
x√

x2 − 4
, which exists for all x ∈ (2, 4). Therefore, f(x)

is derivable in (2, 4).

Thus, both the conditions of Lagrange’s Mean Value Theorem are satisfied. Hence, there
exists at-least one point c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c), where a = 2, b = 4 (5.16)

Now,

f ′(x) =
x√

x2 − 4

=⇒ f ′(c) =
c√

c2 − 4

f(b) = f(4) =
√
42 − 4 = 2

√
3

and f(a) = f(2) =
√
22 − 4 = 0.

Therefore, substituting all these values in (5.16), we get

2
√
3− 0

4− 2
=

c√
c2 − 4

=⇒ c√
c2 − 4

=
√
3

=⇒ 2c2 = 12

i.e. c = ±
√
6.

Now, c = +
√
6 ∈ (2, 4). Also for, x =

√
6, y =

√
x2 − 4 =

√
6− 4 =

√
2. Thus, the

tangent to the given curve at the point (
√
6,
√
2) is parallel to the chord joining the end

points of the curve for [2, 4].

Theorem 5.3. If f satisfies all the conditions of Lagrange’s Mean Value Theorem and if
f ′(x) = 0 ∀ x ∈ (a, b), then f is constant on [a, b].
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Proof. Let x1 and x2 be any two points in [a, b] such that x1 < x2. Let f ′(x) = 0 ∀x ∈
(a, b). Then by the Lagrange’s Mean value theorem, we have

f(x2)− f(x1)

x2 − x1
= f ′(c) = 0, for some c ∈ (x1, x2).

=⇒ f(x1) = f(x2) ∀ x1, x2 ∈ [a, b] and so f is constant on [a, b].

Alternative form of Lagrange’s Mean Value Theorem

Let us take h = b−a. Then the interval [a, b] becomes [a, a+h]. A point c in [a, a+h] can
be written in the form a + θh, where 0 < θ < 1. Hence Lagrange’s theorem can be stated
as follows:
Let f be a function defined on [a, a+ h], such that

(i) f is continuous in [a, a+ h]

(ii) f is derivable in [a, a+ h]

Then there exists at least one real number θ, 0 < θ < 1, such that :

f ′(a+ θh) =
f(a+ h)− f(a)

h
,

equivalently, f(a+ h) = f(a) + hf ′(a+ θh).

Example 5.12. Prove that for any quadratic function px2 + qx + r, the value of θ in the
Lagrange’s Theorem is always 1/2 irrespective of the values of p, q, r, a, h.

Solution. Let f(x) = px2+qx+r and the interval is [a, a+h]. Since f(x) is a polynomial
function, therefore

(i) f(x) is continuous on [a, a+ h]

(ii) f(x) is derivable on (a, a+ h)

Therefore, by the Lagrange’s Mean Value Theorem there exist at least one θ ∈ (0, 1),
satisfying

f(a+ h) = f(a) + hf ′(a+ θh)

i.e.
p(a+ h)2 + q(a+ h) + r = pa2 + qa+ r + h(2p(a+ θh) + q)

⇒ p(a+ h)2–a2 + qh = 2aph+ 2pθh2 + gh

⇒ ph(2a+ h) = 2aph+ 2pθh2

⇒ θ = 1/2

Since, θ is independent of p, q, r, a, h. So, the value of θ is 1/2, irrespective of the values of
p, q, r, a and h.

In-text Exercise 5.2. Solve the following questions:
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1. Examine the applicability of Lagrange’s Mean Value Theorem for the following func-
tions:

(i)

f(x) =

{
2 + x3 if x ≤ 1
3x if x > 1

on [−1, 2].

(ii) f(x) = log x on [1, e].

(iii) f(x) = (x− 1)(x− 2)(x− 3) on [0, 4].

(iv) f(x) = x3 − 5x2 − 3x on [1, 3].

2. If a and b are distinct real numbers, show that there exist a real number c between a
and b such that

a2 + ab+ b2 = 3c2.

3. Show that Lagrange’s Mean Value Theorem is not applicable to the function f(x) =
1
x

on [−1, 1].

4. Find a point on the parabola y = (x− 4)2, where the tangent is parallel to the chord
joining (4, 0) and (5, 1).

5.5 Applications of Mean Value Theorem to monotonic
functions and inequalities

In this section, we will study the application of Mean Value Theorem for finding the mono-
tonic functions and establish inequalities using the concept of monotone functions.

5.5.1 Monotone functions
Definition 5.1. A function f defined on a interval [a, b] is said to be monotonically in-
creasing or simply increasing, if for x1, x2 in [a, b]

f(x1) ≤ f(x2) whenever x1 ≤ x2.

Definition 5.2. A function f defined on a interval [a, b] is said to be strictly increasing, if
for x1, x2 in [a, b]

f(x1) < f(x2) whenever x1 < x2.

Definition 5.3. A function f defined on a interval [a, b] is said to be monotonically de-
creasing or simply decreasing, if for x1, x2 in [a, b]

f(x1) ≥ f(x2) whenever x1 ≤ x2.

Definition 5.4. A function f defined on a interval [a, b] is said to be strictly decreasing, if
for x1, x2 in[a, b]

f(x1) > f(x2) whenever x1 < x2.
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Definition 5.5. A function f defined on a interval [a, b] is said to be monotone or strictly
monotone, if f is either an increasing (or strictly increasing) function or a decreasing (or
strictly decreasing) function.

Figure 5.5: Graphs for monotonic functions: Figure (a) represent monotonically increasing
function while Figure (b) represent monotonically decreasing function.

Theorem 5.4. (Necessary and sufficient condition) Let f : (a, b) → R be a differentiable
function on (a, b). Then

1. f is increasing on (a, b) if and only if f ′(x) ≥ 0 for all x ∈ (a, b).

2. f is decreasing on (a, b) if and only if f ′(x) ≤ 0 for all x ∈ (a, b).

Proof. (i) Necessary condition

Consider an arbitrary point x0 ∈ (a, b). If the function f is increasing on (a, b), then by
definition, we can write;

∀x ∈ (a, b) : x ≥ x0 =⇒ f(x) ≥ f(x0);

∀x ∈ (a, b) : x ≤ x0 =⇒ f(x) ≤ f(x0).

By above result, we can write as

f(x)− f(x0)

x− x0
≥ 0, where x ̸= x0 (5.17)

In the limit as x → x0, the left hand side of the inequality is equal to the derivative of the
function at the point x0, that is

lim
x→x0

f(x)− f(x0)

x− x0
= f ′(x0) ≥ 0, (5.18)

This relation is valid for any x0 ∈ (a, b).
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Sufficient condition
Let x1 and x2 be any two points of [a, b] such that x1 ≤ x2. Let f ′(x) ≥ 0 ∀x ∈ (a, b).
Then by the Lagrange’s Mean Value Theorem,

f(x2)− f(x1)

x2 − x1
= f ′(c), for some c ∈ (x1, x2).

⇒ f(x2)− f(x1) = (x2 − x1)f
′(c),

Since, f ′(c) ≥ 0 and x2 − x1 ≥ 0, therefore f(x2) − f(x1) ≥ 0. Hence, f(x2) ≥ f(x1)
when x2 ≥ x1, x1, x2 ∈ (a, b). Thus, f is increasing on (a, b).

(ii) By proceeding as in part (i), we can show that f is decreasing on (a, b) if and only if
f ′(x) ≤ 0 for all x ∈ (a, b).

Example 5.13. Find the intervals in which the function f(x) = 2x3 + 9x2 + 12x + 20 is
(i) increasing (ii) decreasing.

Solution. We have
f(x) = 2x3 + 9x2 + 12x+ 20.

∴ f ′(x) = 6x2 + 18x+ 12 = 6(x2 + 3x+ 2).

(i) For f(x) to be increasing, we must have f ′(x) ≥ 0

⇒ 6(x2 + 3x+ 2) ≥ 0

⇒ (x2 − 3x+ 2) ≥ 0 [∵ 6 > 0 and 6(x2 + 3x+ 2) ≥ 0 ∴ x2 + 3x+ 2 ≥ 0]

⇒ (x+ 1)(x+ 2) ≥ 0

⇒ x ≤ −2 or x ≥ −1

⇒ x ∈ (−∞,−2] ∪ [−1,∞)

Figure 5.6: Signs of f ′(x) for different values of x.

So, f(x) is increasing on (−∞,−2] ∪ [−1,∞).

(ii) For f(x) to be decreasing, we must have f ′(x) ≤ 0

⇒ 6(x2 + 3x+ 2) ≤ 0

⇒ (x2 + 3x+ 2) ≤ 0 [∵ 6 > 0 and 6(x2 + 3x+ 2) ≤ 0 ∴ x2 + 3x+ 2 ≤ 0]

⇒ (x+ 1)(x+ 2) ≤ 0

⇒ −2 ≤ x ≤ −1
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Figure 5.7: Signs of f ′(x) for different values of x.

So, f(x) is decreasing on [−2,−1].

Example 5.14. Find the intervals in which the function f(x) = x4 − x3

3
is increasing or

decreasing.

Solution. We have

f(x) = x4 − x3

3

∴ f ′(x) = 4x3 − x2 = x2(4x− 1)

(i) For f(x) to be increasing, we must have f ′(x) ≥ 0

⇒ x2(4x− 1) ≥ 0

⇒ (4x− 1) ≥ 0 and x ̸= 0

⇒ 4x ≥ 1 and x ̸= 0 ⇒ x ≥ 1

4
⇒ x ∈

[
1

4
,∞
)
.

So, f(x) is increasing on
[
1

4
,∞
)
.

(ii) For f(x) to be decreasing, we must have f ′(x) ≤ 0

⇒ x2(4x− 1) ≤ 0

⇒ (4x− 1) ≤ 0 and x ̸= 0 [∵ x2 > 0]

⇒ 4x ≤ 1 and x ̸= 0 ⇒ x ≤ 1

4
and x ̸= 0 ⇒ x ∈ (−∞, 0) ∪

(
0,

1

4

]
.

So, f(x) is decreasing on (−∞, 0) ∪
(
0,

1

4

]
.

Note. The above mentioned theorem 5.4 is stated regarding monotonic functions. Similar
theorem, as stated below, holds for strictly monotonic functions.

Theorem 5.5. (Necessary and sufficient condition) Let f : (a, b) → R be a differentiable
function on (a, b). Then

1. f is strictly increasing on (a, b) if and only if f ′(x) > 0 for all x ∈ (a, b).

2. f is strictly decreasing on (a, b) if and only if f ′(x) < 0 for all x ∈ (a, b).
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Example 5.15. Find the intervals in which f(x) = 2 log(x − 2) − x2 + 4x + 1 is strictly
increasing or strictly decreasing.

Solution. We have, f(x) is well defined for all x > 2.
Now,

f(x) = 2 log(x− 2)− x2 + 4x+ 1

⇒ f ′(x) =
2

x− 2
− 2x+ 4 =

−2x2 + 8x− 6

x− 2
=

−2(x− 1)(x− 3)

x− 2
.

For f(x) to be increasing, we must have f ′(x) > 0

or
−2(x− 1)(x− 3)

x− 2
> 0

or
(x− 1)(x− 3)

x− 2
< 0.

Since, x > 2 we have x − 2 > 0 and x − 1 > 0. Therefore,
(x− 1)(x− 3)

x− 2
< 0 when

x− 3 < 0 That is, when x < 3.
Thus, f ′(x) > 0 when x ∈ (2, 3). =⇒ f(x) is strictly increasing on (2, 3).

For f(x) to be decreasing, we must have f ′(x) < 0

or
−2(x− 1)(x− 3)

x− 2
< 0

or
(x− 1)(x− 3)

x− 2
> 0

That is when x−3 > 0 or x > 3, as x−1 > 0 and x−2 > 0. So, f(x) is strictly decreasing
on (3,∞).

5.5.2 Inequalities
Here, we will establish some important inequalities by using Lagrange’s Mean Value The-
orem and also by using the concept of monotone functions.

Example 5.16. Use Mean Value Theorem to prove that

1 + x < ex < 1 + xex ∀x > 0

Solution. Consider f(x) = ex, x ∈ [0, x]. Here, f is continuous on [0, x] and derivable on
(0, x), therefore by the Mean Value Theorem there exists some c ∈ (0, x) such that

f(x)− f(0)

x− 0
= f ′(c)

or
ex − e0

x− 0
= ec

or
ex − 1

x
= ec. (5.19)
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Now 0 < c < x

=⇒ e0 < ec < ex, as ex is an increasing function on(0,∞).

or 1 < ec < ex

or 1 <
ex − 1

x
< ex [Using 5.19]

or x < ex − 1 < x · ex

=⇒ 1 + x < ex < 1 + xex, ∀x > 0.

Example 5.17. Using Lagrange’s Mean Value Theorem, show that

x

1 + x
< loge(1 + x) < x, x > 0

Solution. Let f(x) = loge(1 + x), x > 0

=⇒ f ′(x) =
1

1 + x
.

Then, f is continuous in [0, x] and derivable in (0, x). Therefore, by Lagrange’s Mean
Value Theorem, there exists θ ∈ (0, 1), such that

f(x)− f(0)

x− 0
= f ′(θx)

or
loge(1 + x) =

x

1 + θx
[∵ f(0) = loge 1 = 0] (5.20)

Now 0 < θ < 1 and x > 0 ⇒ θx < x

⇒ 1 + θx < 1 + x⇒ 1

1 + θx
>

1

1 + x

⇒ x

1 + θx
>

x

1 + x
⇒ x

1 + x
<

x

1 + θx
(5.21)

Again 0 < θ < 1 and x > 0 ⇒ 1 < 1 + θx

⇒ 1

1 + θx
< 1 ⇒ x

1 + θx
< x (5.22)

From (5.21) and (5.22), we obtain

x

1 + x
<

x

1 + θx
< x (5.23)

Now, from (5.20) and (5.23), we obtain

x

1 + x
< loge(1 + x) < x.

Example 5.18. Prove that tanx > x whenever 0 < x < π
2
.
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Solution. Let c be any real number such that 0 < c < π
2
. Let us consider the function

f(x) = tan x− x ∀ x ∈ [0, c]

Then, f is continuous on [0, c] as well as derivable on (0, c). Now,

f ′(x) = sec2 x− 1 = tan2 x > 0 for 0 < x < c.

Thus, f is strictly increasing in [0, c]

⇒ f(c) > f(0) for c > 0.

But f(0) = 0. Therefore f(c) > 0 ⇒ tan c − c > 0. Since c is any real number such that
0 < c < π

2
, therefore

tanx− x > 0, or tanx > x whenever 0 < x <
π

2
.

Example 5.19. Show that, for all x > 0

ex > 1 + x

Solution. We define the function f(x) as

f(x) = ex − (1 + x), x > 0.

Then f(x) is a differentiable function for x > 0. Let us define another function g(x) as

g(x) = f ′(x) = ex − 1 ∀ x > 0.

=⇒ g′(x) = ex > 0 for all x > 0.

⇒ g is a strictly increasing function for x > 0. Therefore

x > 0 ⇒ g(x) > g(0)

i.e. ex − 1 > e0 − 1

or ex − 1 > 0

⇒ f ′(x) > 0 ∀ x > 0.

⇒ f is an increasing function of x.

∴ x > 0 ⇒ f(x) > f(0)

i.e. ex − (1 + x) > e0 − (1 + 0) = 0

⇒ ex > (1 + x) ∀ x > 0.

In-text Exercise 5.3. Solve the following questions:

1. Separate the interval in which f(x) = x3 +8x2 +5x− 2 is increasing or decreasing.
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2. Use Lagrange’s Mean Value Theorem to show that

(b− a) sec2 a < tan b− tan a < (b− a) sec2 b,

where 0 < a < b < π
2
.

3. Using Lagrange’s Mean Value Theorem, prove that

ex > 1 + x+ x2.

4. Show that x(sinx)−1 increases for 0 < x < π
2
.

5. Find the interval in which f(x) =
x

log x
is increasing or decreasing.

6. Find the value of k for which f(x) = kx3 − 9kx2 + 9x+ 3 is increasing on R.

5.6 Summary
We have discussed following topics in this lesson:

1. Rolle’s Theorem is a particular case of Lagrange’s Mean Value Theorem.

2. Lagrange’s Mean Value Theorem: If f be a function defined in the closed interval
[a, b] such that it is continuous in closed interval [a, b], derivable in open interval
(a, b), then there exist at-least one point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

3. We obtain from the Lagrange’s Mean Value Theorem that the average rate change
in the value of the function in an interval is equal to the actual rate of change of the
function at some point in the interval.

4. Applications of the Mean Value Theorem.

5. Monotone functions and their applications to establish some inequalities.

5.7 Self-Assessment Exercises
1. Let f(x) = x

2
3 , a = −1, b = 8. Show that there is no real number c ∈ (a, b) such

that

f ′(c) =
f(b)− f(a)

b− a
.

2. If f : [−5, 5] → R is differentiable and if f ′(x) doesn’t vanish anywhere, then prove
that f(−5) ̸= f(5).
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3. Discuss the applicability of Rolle’s Theorem for the following functions on the indi-
cated intervals:

(i) f(x) = x(x− 4)2 on [0, 4].

(ii) f(x) = sin4 x+ cos4 x on
[
0, π

2
.
]

(iii) f(x) = [x] for −1 ≤ x ≤ 1, where [x] denotes the greatest integer not exceed-
ing x.

4. Verify that on the curve f(x) = ax2 + bx + c, the chord joining the points (p, f(p))

and (q, f(q)) is parallel to the tangent at the point x =
p+ q

2
.

5. Discuss the validity of the Rolle’s Theorem for

f(x) = (x− c)m(x− d)n

in [a, b]; where m,n being positive integers.

6. Use Rolle’s Theorem to show that the equation

x3 + 4x− 1 = 0,

has exactly one real root.

7. Verify Lagrange’s Mean Value Theorem for the following functions:

(i) f(x) = sinx− sin 2x− x on [0, π].

(ii) f(x) = |x| on [−5, 5].

(iii) f(x) =
√
x2 − 4 on [2, 4].

(iv) f(x) = 1− (x− 1)
2
3 on [0, 2].

8. Using Lagrange’s Mean Value Theorem show that

(i) x− x3

6
< sinx < x.

(ii) | sinx− sin y| ≤ |x− y| for all x, y ∈ R.

9. Let f and g be differentiable function on [0, 1] such that f(0) = 2, g(0) = 0, f(1) = 6
and g(1) = 2. Show that there exist c ∈ (0, 1) such that f ′(c) = 2g′(c).

10. Show that the function 3x3 − 9x2 + 9x+ 7 is strictly increasing in every interval.

11. Find the intervals in which the function f(x) = 2x3+9x2+12x+20 is (i) increasing
(ii) decreasing.

12. Find the interval in which the given function

f(x) = (x4 + 6x3 + 17x2 + 32x+ 32)e−x

is increasing and decreasing.
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13. Using Lagrange’s Mean Value Theorem show that

x

1 + x2
< tan−1 x < x for x > 0.

14. Find the intervals in which the function f given by

f(x) =
4 sinx− 2x− x cosx

2 + cos x
, 0 ≤ x ≤ 2π.

is increasing and decreasing.

15. Prove that the function

f(x) = x3 − 3x2 + 3x− 100

is increasing on R.

16. Establish the Jordan’s Inequality

1 <
x

sinx
≤ π

2
for 0 < x ≤ π

2
.

17. Establish the Bernoulli’s inequality

(1 + x)p ≥ 1 + px for x > −1 and p > 1.

5.8 Solutions to In-text Exercises
Exercise 5.1

1. (i) Not applicable

(ii) Not applicable

(iii) Rolle’s Theorem is applicable at the point is c = π.

(iv) Not applicable

2. (0, 16)

3. b = −5, c = 8.

Exercise 5.2

1. (i) Since the function f(x) is continuous and differential at [−1, 2], hence the Mean
Value Theorem is applicable. The value of c is obtained as c = ±

√
5
3
.

(ii) The Mean Value Theorem is applicable and the value of c is obtained as c =
e− 1.

(iii) The Mean Value Theorem is applicable and the value of c is obtained as c = 3.

(iv) The Mean Value Theorem is applicable and the value of c is obtained as c = 7
3
.
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2. Applying Lagrange’s Mean Value Theorem to f(x) = x3 in [a, b], the required result
can be obtained.

3. As the function is not continuous and differentiable at [−1, 1].

4.
(
9

2
,
1

4

)
.

Exercise 5.3

1. The given function is increasing on (−∞,−5],
[
−1

3
,∞
)

and decreasing on
[
−5,−1

3

]
.

5. The given function is increasing on (e,∞), and decreasing on (0, e)− {1}.

6. f(x) is increasing on R, if k ∈
(
0, 1

3

)
.

5.9 Suggested Readings
1. Narayan, Shanti (Revised by Mittal, P. K.). Differential Calculus. S. Chand, Delhi,

2019.

2. Prasad, Gorakh (2016). Differential Calculus (19th ed.) Pothishala Pvt. Ltd. Alla-
habad.

3. Thomas Jr., George B., Weir, Maurice D.,Hass, Joel (2014). Thomas Calculus (13th
ed.). Pearson Education, Delhi. Indian Reprint 2017.
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6.1 Learning Objectives
The learning objectives of this lesson are to:

• study the Cauchy’s Mean Value Theorem and its applications.

• explain the meaning and significance of Taylor’s theorem.

120

A.C.-22.11.2022 
Appendix-111



6.2. INTRODUCTION 121

• learn to obtain the Taylor series expansion of a function.

• obtain the Maclaurin’s series expansions of some standard functions.

6.2 Introduction
We have already learnt the applications of Rolle’s theorem and Lagrange’s Mean Value
Theorem in the previous lesson 5. Taylor’s theorem, which we will study in this lesson,
can be regarded as a general form of Lagrange’s Mean Value Theorem when the function
is differentiable successively n times, n > 1. In this lesson, we examine how functions
may be expressed in terms of power series. This is an extremely useful way of expressing
a function since we can replace complicated functions in terms of simple polynomials.

6.3 Cauchy’s Mean Value Theorem
Cauchy’s Mean Value Theorem is a generalized form of the Lagrange’s Mean Value The-
orem. This theorem is also called the “Second Mean Value Theorem”. It establishes the
relationship between the derivative of the two functions and the change in these functions
on a finite interval.

Theorem 6.1 (Cauchy’s Mean Value Theorem). Let f and g be two functions defined on
the closed interval [a, b], such that

(i) f(x) and g(x) both are continuous on [a, b].

(ii) f(x) and g(x) both are differentiable on (a, b).

(iii) g′(x) ̸= 0 ∀x ∈ (a, b).

Then, there exist a point c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Proof. We assume that g(a) ̸= g(b). If g(a) = g(b), then g(x) satisfies all the conditions
of Rolle’s theorem. Hence, there exist c ∈ (a, b) such that g′(c) = 0 which contradict
the condition (iii) of the theorem. Thus, g(a) ̸= g(b). We define a function ϕ(x) =
f(x) + Ag(x), where, A is constant to be determined. Assume ϕ(a) = ϕ(b), then

f(a) + Ag(a) = f(b) + Ag(b)

A =
f(b)− f(a)

g(b)− g(a)
. (6.1)

Also, ϕ satisfies all the conditions of Rolle’s theorem, i.e.

(i) Since f and g both are continuous on [a, b], hence ϕ(x) is continuous.
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(ii) f and g are derivable on (a, b), therefore ϕ(x) is derivable on (a, b).

(iii) ϕ(a) = ϕ(b).

Thus, there exist c ∈ (a, b) such that ϕ′(c) = 0 i.e.

f ′(c) + Ag′(c) = 0

=⇒ −A =
f ′(c)

g′(c)
(6.2)

Therefore from, 6.1 and 6.2, we get

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
. (6.3)

Remark. In the Cauchy’s Mean Value Theorem, if we take g(x) = x, then g′(x) = 1.
Also, g(b) = b and g(a) = a. Thus, from 6.3, we get

f ′(c) =
f(b)− f(a)

b− a

which is the result of the Lagrange’s Mean Value Theorem. Hence the Lagrange’s Mean
Value Theorem is a particular form of the Cauchy’s Mean Value Theorem.

Example 6.1. Verify the Cauchy’s Mean Value Theorem for f(x) = x2, g(x) = x3 in
[1, 2].

Solution. Here f(x) = x2 and g(x) = x3

(i) f and g being polynomial functions, they are continuous on [1, 2].

(ii) f and g being polynomial functions, they are derivable on (1, 2).

(iii) g′(x) = 3x2 ̸= 0 for all x ∈ (1, 2).

Thus, the conditions of Cauchy’s Mean Value Theorem are satisfied. Therefore, there exists
some point c ∈ (1, 2) such that

f(2)− f(1)

g(2)− g(1)
=
f ′(c)

g′(c)

=⇒ 4− 1

8− 1
=

2c

3c2

=⇒ 3

7
=

2

3c

=⇒ c =
14

9
, which lies in (1, 2).

Hence, Cauchy’s Mean Value Theorem is verified.
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Example 6.2. Show that

sinα− sin β

cosα− cos β
= cot θ, 0 < α < β <

π

2

Solution. Consider two functions f(x) and g(x):

f(x) = sin x, g(x) = cos x for all x ∈ [α, β], 0 < α < β <
π

2
.

We apply Cauchy’s Mean Value Theorem on f(x) and g(x) on the interval [α, β]. We have

(i) f(x) = sinx and g(x) = cos x are continuous functions in the closed interval [α, β].

(ii) Since, f ′(x) = cos x and g′(x) = − sinx. Therefore, both the functions f and g are
derivable in (α, β).

(iii) g′(x) = − sinx ̸= 0 for all x ∈ (α, β).

Thus, all the conditions of Cauchy’s Mean Value Theorem are satisfied and so there exists
some point θ ∈ (α, β), such that

f(β)− f(α)

g(β)− g(α)
=
f ′(θ)

g′(θ)

⇒ sin β − sinα

cos β − cosα
=

cos θ

− sin θ

⇒ sin β − sinα

cos β − cosα
= − cot θ

⇒ sinα− sin β

cos β − cosα
= cot θ, where 0 < α < β <

π

2
.

In-text Exercise 6.1. Solve the following questions:

1. Verify Cauchy’s Mean Value Theorem for

(i) f(x) = sinx, g(x) = cos x in [−π/2, 0].
(ii) f(x) = ex, g(x) = e−x in [0, 1].

2. Let the function ϕ be continuous in [a, b] and derivable in (a, b). Show that there
exists a point c in (a, b) such that

2c (ϕ(a)− ϕ(b)) = ϕ′(c)(a2 − b2).

6.4 Taylor’s Theorem
In the lesson 5, we have discussed Mean Value Theorems, which use the first order deriva-
tives of functions. We generalize the concept to the functions those are differentiable k
times(say), successively and obtain Taylor’s theorem. Taylor’s theorem gives an approxi-
mation of a k-times differentiable function around a given point by a polynomial of degree
k, called the kth-order Taylor polynomial.
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Theorem 6.2 (Taylor’s Theorem with Lagrange’s form of Remainder). If a function f
is defined on [a, a+ h], such that

(i) f and the derivatives f ′, f ′′,..., f (n−1) are continuous on [a, a+ h],

(ii) the nth derivative f (n) exist on (a, a+ h),

then there exists at least one point θ, 0 < θ < 1, such that

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a+ θh).

Proof. Consider the function

F (x) = f(x) + (a+ h− x)f ′(x) +
(a+ h− x)2

2!
f ′′(x) + ...

...+
(a+ h− x)n−1

(n− 1)!
f (n−1)(x) +

(a+ h− x)n

(n)!
A, (6.4)

where A is a constant to be chosen so that F (a) = F (a+ h).

Now from equation (6.4), we have

F (a) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
A, (6.5)

and F (a+ h) = f(a+ h). (6.6)

Therefore F (a) = F (a+ h) gives

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
A, (6.7)

which gives the value of A. With the choice of A, the function F (x) satisfies all the condi-
tions of Rolle’s Theorem on [a, a+ h], as

1. F (x) is continuous on [a, a+h]. As f, f ′, f ′′ . . . , f (n−1) are continuous on [a, a+h].

2. F (x) is differentiable on (a, a + h). As f, f ′, f ′′ . . . , f (n−1) are differentiable on
(a, a+ h).

3. F (a) = F (a+ h)

Hence, from Rolle’s Theorem there exist at-least one real number θ, 0 < θ < 1 such that

F ′(a+ θh) = 0. (6.8)
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Differentiating equation (6.4), w.r.t x, we get

F ′(x) = f ′(x)

+ (a+ h− x)f ′′(x)− f ′(x)

+
(a+ h− x)2

2!
f ′′′(x) +

2(a+ h− x)

2!
(−1)f ′′(x)

+ . . . . . . . . .

+ . . . . . . . . .

+
(a+ h− x)n−1

(n− 1)!
f (n)(x)− (n− 1)(a+ h− x)n−2

(n− 1)!
f (n−1)(x)

+
n(a+ h− x)n−1(−1)A

n!

or F ′(x) =
(a+ h− x)n−1

(n− 1)!
f (n)(x)− (a+ h− x)n−1

(n− 1)!
A

=
(a+ h− x)n−1

(n− 1)!
[f (n)(x)− A]

For x = a+ θh, we get

F ′(a+ θh) =
[h(1− θ)]n−1

(n− 1)!
[f (n)(a+ θh)− A]. (6.9)

From (6.8) and (6.9), we get

f ′′(a+ θh)− A = 0 =⇒ A = fn(a+ θh).

Therefore, substituting the above value of A in (6.7), we have

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a+ θh),

which is the required result.

Remark. Following are some important remarks:

1. The (n + 1)th term i.e.
hn

n!
f (n)(a + θh) is called the Lagrange’s remainder after n

terms and is denoted by Rn. Thus, the above theorem is called Taylor’s Theorem
with Lagrange’s Form of Remainder

2. Putting n = 1 in Taylor’s theorem, we get f(a + h) = f(a) + hf ′(a + θh) where
0 < θ < 1, which is the conclusion of Lagrange’s Mean Value Theorem. Hence we
conclude that Mean Value Theorem is a particular case of Taylor’s Theorem.

3. If the remainder Rn is expressed as

Rn =
hn

(n− 1)!
(1− θ)n−1f (n)(a+ θh), (6.10)

then the above theorem is called Taylor’s Theorem with Cauchy’s Form of Re-
mainder and Rn is called Cauchy’s Remainder after n terms.
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4. Alternate form of Taylor’s Theorem
If we choose b = a+h then, h = b−a and c = a+ θh = a+ θ(b−a) and c ∈ (a, b).
Therefore, alternately Taylor’s Theorem can be concluded as follows

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) + · · ·

+
(b− a)n−1

(n− 1)!
f (n−1)(a) +

(b− a)n

n!
f (n)(c), [a < c < b].

Example 6.3. By using Taylor’s Theorem with Lagrange’s form of remainder, show that
Show that

log(x+ h) = log x+
h

x
− h2

2x2
+ . . .+ (−1)n−1 hn

n(x+ θh)n
, 0 < θ < 1, h > 0.

Solution. Let f(x+ h) = log(x+ h). Therefore,

f(x) = log x, (log x is natural logarithm)

f ′(x) =
1

x

f ′′(x) = − 1

x2

f ′′′(x) =
(−1)(−2)

x3
= (−1)2

2!

x3

. . .

. . .

f (n)(x) = (−1)n−1 (n− 1)!

xn

∴ f (n)(x+ θh) = (−1)n−1 (n− 1)!

(x+ θh)n
.

Then, by using Taylor’s theorem with Lagrange’s form of remainder, we have

f(x+h) = f(x)+hf ′(x)+
h2

2!
f ′′(x)+

h3

3!
f ′′′(x)+ . . .

h2n− 1

(n− 1)!
fn−1(x)+

hn

n!
fn(x+ θh).

∴ log(x+ h) = log x+
h

x
− h2

2x2
+
h32!

3!x3
+ . . .

hn−1

(n− 1)!
(−1)n−2 (n− 2)!

xn−1
+
hn

n!
(−1)n−1 (n− 1)!

(x+ θh)n

= log x+
h

x
− h2

2x2
+

h3

3x3
+ . . . (−1)n−2 hn−1

(n− 1)xn−1
+ (−1)n−1 hn

n(x+ θh)n
.

Hence, the result.
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6.4.1 Taylor’s Infinite Series
If a function f(x) possesses continuous derivatives of all orders in (a, a+h) , then for every
integer n, howsoever large, there corresponds a Taylor’s development with Lagrange’s form
of remainder, viz

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +Rn

where,

Rn =
hn

n!
fn(a+ θh), 0 < θ < 1. (6.11)

It may be written as f(a+ h) = Sn +Rn,

where

Sn = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a). (6.12)

Now if Rn converges to 0 as n→ ∞, then

lim
n→∞

Sn = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .

and therefore, we can write

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . . .

This is known as Taylor’s infinite series expansion of f(a+ h). It is stated as follows:

Theorem 6.3 (Taylor’s infinite series expansion). If a function f(x) defined on [a, a+ h]
is such that

(i) f(x) possesses continuous derivatives of all orders in (a, a+ h).

(ii) For 0 < θ < 1, Taylor’s remainder Rn =
hn

n!
f (n)(a+ θh) tends to 0 as n→ ∞,

then

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn

n!
f (n)(a) + . . . . (6.13)

Other Forms of Taylor’s Infinite Series :

1. Replacing a by x , in equation (6.13), we have

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) + . . .+

hn

n!
f (n)(x) + . . . (6.14)
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2. Putting a+ h = b or h = b− a , in (6.13), we have

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2!
f ′′(a) + . . .+

(b− a)n

n!
f (n)(a) + . . .

(6.15)

3. Putting a+ h = x or h = x− a , in (6.13), we have

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + . . .+

(x− a)n

n!
f (n)(a) + . . .

(6.16)

which expands f(x) in ascending integral powers of (x− a).

Example 6.4. Assuming the validity of expansion by Taylor’s series, show that

sin
(π
4
+ θ
)
=

1√
2

(
1 + θ − θ2

2!
− θ3

3!
+ · · ·

)
.

Solution. Given, f(x) = sinx. Let a = π
4
, h = θ, then by assuming the validity of expan-

sion, we have

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f ′′′(a) + . . .

or

sin(a+ h) = sin a+ h cos a+
h2

2!
(− sin a) +

h3

3!
(− cos a) + . . .

Putting a = π
4

and h = θ, we obtain

sin
(π
4
+ θ
)
=

1√
2
+

θ√
2
+
θ2

2!

(
− 1√

2

)
+
θ3

3!

(
− 1√

2

)
+ . . .

Hence,

sin
(π
4
+ θ
)
=

1√
2

(
1 + θ − θ2

2!
− θ3

3!
+ . . .

)
.

Example 6.5. Assuming the validity of Taylor’s series expansion, show that

tan−1 x = tan−1 π

4
+

(
x− π

4

)(
1 + π2

16

) − π
(
x− π

4

)2
4
(
1 + π2

16

)2 + · · ·

Solution. Given
f(x) = tan−1 x

Then,

f ′(x) =
1

1 + x2
,

f ′′(x) = − 2x

(1 + x2)2
etc.
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Now, f(x) can be written as

f(x) = tan−1 x = tan−1
(π
4
+ x− π

4

)
= tan−1(a+ h),

where a =
π

4
, and h = x− π

4
.

Assuming the validity of Taylor’s series expansion, we have

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .

∴ tan−1 x = tan−1 π

4
+
(
x− π

4

) 1

1 +
(
π2

16

) − π

4

(
x− π

4

)2(
1 +

(
π2

16

))2 + · · ·

In-text Exercise 6.2. Solve the following questions:

1. Assuming the validity of Taylor’s series expansion, show that

sinx = 1− (x− π/2)2

2!
+

(x− π/2)4

4!
− ...

2. Apply Taylor’s series expansion to prove

sec−1(x+ h) = sec−1 x+
h

x
√
x2 − 1

− (2x2 − 1)

x2(x2 − 1)3/2
.
h2

2!
+ ...

3. Apply Taylor’s series expansion to prove

e1+h = e

(
1 + h+

h2

2!
+
h3

3!
+ ...

)

4. Expand tanx in power of (x− π/4) up-to first four terms.

6.4.2 Maclaurin’s Theorem

If in the statement of Taylor’s Theorem 6.2, we put a + h = x and a = 0, then we get the
Maclaurin’s Theorem as stated below:

Theorem 6.4. If a function f(x) is defined on [0, x], such that

(i) f and its derivatives f ′, f ′′, f ′′′, . . . , f (n−1) are continuous on [0, x].

(ii) f (n)(x) exist on (0, x),
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then there exists at least one point θ, 0 < θ < 1 such that

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + . . .+

xn−1

(n− 1)!
· f (n−1)(0) +Rn,

where Rn =
xn

n!
f (n)(θx), (Lagrange’s Remainder after n terms)

and Rn =
xn(1− θ)n−1

(n− 1)!
f (n)(θx), (Cauchy’s Remainder after n terms).

Example 6.6. Show that for every value of x

sinx = x− x3

3!
+
x5

5!
+ . . .+ (−1)n−1 x2n−1

(2n− 1)!
+ (−1)n

x2n

(2n)!
sin θx, 0 < θ < 1.

Solution. Let f(x) = sinx. Then

fn(x) = sin
(
x+

nπ

2

)
n ∈ N.

Now for n = 2m (even)

f (n)(x) = f (2n)(x) = sin
(
x+ 2n ·

(π
2

))
= sin (x+ nπ)

=⇒ fn(0) = 0,when n is even.

Similarly, when n = 2m− 1 (odd), then

fn(0) = (−1)
n−1
2

or f 2n−1(0) = (−1)n−1

Also f 2n(θx) = sin[θx+ nπ] = (−1)n sin(θx)

Therefore, by using Maclaurin’s Theorem for f(x) = sinx, we get

∴ f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + . . .+

x2n−1

(2n− 1)!
f (2n−1)(x) +

x2n

(2n)!
f (2n)(θx)

That is

sinx = 0 + x · 1 + x2

2!
· 0 + x3

3!
(−1)1 + . . .+

x2n−1

(2n− 1)!
(−1)n−1 +

x2n

(2n)!
(−1)n sin θx

= x− x3

3!
+
x5

5!
+ . . .+

x2n−1

(2n− 1)!
(−1)n−1 +

x2n

(2n)!
(−1)n sin θx.

6.4.3 Maclaurin’s infinite series
Theorem 6.5 (Maclaurin’s infinite series expansion). If a function f defined on [0, h] is
such that

(i) f(x) possesses continuous derivatives of all order in [0, h],
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(ii) Taylor’s remainder Rn → 0 as n→ ∞,

then for each x ∈ [0, h]

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + . . .+

xn

n!
f (n)(0) + . . .

This is called Maclaurin’s infinite series expansion of f(x).

6.5 Maclaurin’s Series Expansion of Some Standard Func-
tions

6.5.1 Maclaurin’s Series Expansion of ex

Let f(x) = ex x ∈ R, then

f ′(x) = ex, f ′′(x) = ex, . . . , f (n)(x) = ex ∀n ∈ N (6.17)

=⇒ f (n)(x) exist for all n ∈ N and they are continuous as ex is continuous.
Also,

f ′(0) = e0 = 1, f ′′(0) = e0 = 1, . . . , f (n)(0) = e0 = 1 ∀n ∈ N (6.18)

The Lagrange’s form of remainder Rn is given by

Rn =
xn

n!
f (n)(θx), 0 < θ < 1 (6.19)

=
xn

n!
eθx 0 < θ < 1.

→ 0 as n→ ∞ as
xn

n!
= 0 (from example 7.18).

Thus, all the conditions of Maclaurin’s Series Expansion are satisfied. Therefore, we have
the expansion

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · ·

Hence, substituting the value of the function and its derivatives from 6.18, we get

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · ∀x ∈ R

or ex =
∞∑
n=0

xn

n!
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6.5.2 Maclaurin’s Series Expansion of sinx

Let f(x) = sinx, then

f ′(x) = cos x = sin
(
x+

π

2

)
,

f ′′(x) = − sinx = sin (x+ π),

f ′′′(x) = − cosx = sin

(
x+

3π

2

)
,

...

f (n)(x) = sin
(
x+

nπ

2

)
, ∀n ∈ N. (6.20)

Therefore, f(x) and its derivatives f (n)(x), n ∈ N exist and they are continuous as sinx is
continuous for all x ∈ R. Also,

f(0) = sin 0 = 0, f ′(0) = cos 0 = 1, f ′′(0) = − sin 0 = 0, f ′′′(0) = −1 · · · (6.21)

The Lagrange’s form of remainder after n terms for f(x) = sin x is

Rn =
xn

n!
f (n)(θx), 0 < θ < 1 (6.22)

=⇒ Rn =

(
xn

n!
sin
(
θx+

nπ

2

))
0 < θ < 1 (by using (6.20))

=⇒ |Rn − 0| =
∣∣∣∣xnn!
∣∣∣∣ · ∣∣∣sin(θx+ nπ

2

)∣∣∣
≤
∣∣∣∣xnn!
∣∣∣∣

→ 0 as n→ ∞ (by using example 7.18) ,
=⇒ lim

n→∞
Rn = 0.

Thus, all the conditions of Maclaurin’s Series Expansion are satisfied. Therefore, we have
the expansion

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · ·

Hence, substituting the value of the function and its derivatives, we get

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · ∀x ∈ R

or sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.
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6.5.3 Maclaurin’s Series Expansion of cosx
Let f(x) = cos x, then

f ′(x) = − sinx = cos
(
x+

π

2

)
,

f ′′(x) = − cosx = cos (x+ π),

f ′′′(x) = sinx = cos

(
x+

3π

2

)
,

...

f (n)(x) = cos
(
x+

nπ

2

)
, ∀n ∈ N (6.23)

Therefore, f(x) and its derivatives f (n)(x), n ∈ N exist and they are continuous as cosx is
continuous for all x ∈ R. Also,

f(0) = cos 0 = 1, f ′(0) = − sin 0 = 0, f ′′(0) = − cos 0 = 1, f ′′′(0) = 0 · · · (6.24)

The Lagrange’s form of remainder after n terms for f(x) = cos x is

Rn =
xn

n!
f (n)(θx), 0 < θ < 1. (6.25)

=⇒ Rn =
xn

n!
· cos

(
θx+

nπ

2

)
0 < θ < 1 (by using (6.23))

|Rn − 0| =
∣∣∣∣xnn!
∣∣∣∣ · ∣∣∣cos θx+ nπ

2

∣∣∣
≤
∣∣∣∣xnn!
∣∣∣∣

→ 0 as n→ ∞. (from exmaple 7.18).

=⇒ lim
n→∞

Rn = 0. (6.26)

Thus, all the conditions of Maclaurin’s Series Expansion are satisfied. Therefore, we have
the expansion

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + · · ·

Hence, substituting the values of the function and its derivatives, we get

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ∀x ∈ R

or cosx =
∞∑
n=0

(−1)nx2n

(2n)!
.

6.5.4 Maclaurin’s Series Expansion of loge(1 + x) ≡ ln(1 + x)

Let f(x) = loge(1 + x), then

f ′(x) =
1

(1 + x)
, f ′′(x) =

−1

(1 + x)2
, . . . , f (n)(x) =

(−1)n−1(n− 1)!

(1 + x)n
∀n ∈ N and x > −1.
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Therefore, f(x) and its derivatives f (n)(x), n ∈ N are continuous for x > −1. Also,

f(0) = 0, f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2, . . . , f (n)(0) = (−1)n−1(n− 1)! ∀n ∈ N
(6.27)

Now, we have two cases :

Case 1 : 0 ≤ x ≤ 1

The Lagrange form of remainder after n terms is

Rn =
xn

n!
f (n)(θx) (6.28)

=⇒ Rn =
xn

n!
· (−1)n−1(n− 1)!

(1 + θx)n
as f (n)(θx) =

(−1)n(n− 1)!

(1 + θx)n

=
(−1)n−1

n

(
x

1 + θx

)n

.

Since, 0 < θ < 1 and 0 ≤ x ≤ 1, therefore 0 ≤
(

x
(1+θx)

)
< 1. Therefore,

(
x

1 + θx

)n

→ 0 as n→ ∞ (using lim
n→∞

(rn) = 0, for 0 < r < 1.)

Also,
1

n
→ 0 as n→ ∞.

Hence,

Rn =
(−1)n−1

n

(
x

1 + θx

)n

→ 0 as n→ ∞.

Case 2 : −1 < x < 0

For this case, we will consider Cauchy’s form of remainder. That is

Rn =
xn

(n− 1)!
(1− θ)n−1fn(θx), 0 < θ < 1

=
xn

(n− 1)!
(1− θ)n−1 · (−1)n−1(n− 1)!

(1 + θx)n

= (−1)n−1

(
1− θ

1 + θx

)n−1

· xn · 1

1 + θx
.

Since −1 < x < 0 and 0 < θ < 1, therefore

−θ < θx =⇒ 1− θ < 1 + θx, Also 1− θ > 0

A.C.-22.11.2022 
Appendix-111



6.5. MACLAURIN’S SERIES EXPANSION OF SOME STANDARD FUNCTIONS 135

=⇒ 0 <

(
1− θ

1 + θx

)
< 1 (6.29)

Therefore,(
1− θ

1 + θx

)n−1

→ 0 as n→ ∞ (using lim
n→∞

rn → 0, as n→ ∞ for 0 < r < 1.)

Also, −1 < x < 0 ∴ xn → 0 as n→ ∞. Therefore,

xn
(

1− θ

1 + θx

)n

→ 0 as n→ ∞.

Thus,

Rn = (−1)n−1xn
(

1− θ

1 + θx

)n−1

· 1

1 + θx
→ 0 as n→ ∞.

Finally, combining Case 1 and Case 2, we get,

Rn → 0 as n→ ∞.

Hence, both the condition of Maclaurin’s Series Expansion are satisfied. Therefore, we
have the expansion as

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + . . .

=⇒ loge(1 + x) = 0 + x+
x2

2!
(−1) +

x3

3!
· 1 + . . .+

xn

n!
(−1)n−1(n− 1)! + . . .

= x− x2

2
+
x3

3
− x4

4
+ . . .+

(−1)n−1xn

n
+ . . .

or,

loge(1 + x) =
∞∑
n=1

(−1)n−1xn

n
.

6.5.5 Maclaurin’s Series Expansion of (1 + x)m, |x| < 1

Let f(x) = (1 + x)m. We have the following two cases:

Case 1 : ‘m’ is a positive integer

Since

f(x) = (1 + x)m,

f ′(x) = m(1 + x)m−1,

f ′′(x) = m((m− 1)(1 + x)m−2,

...

f (m)(x) = m!,
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=⇒ f (n)(x) = 0 ∀ n > m. (6.30)

The Lagrange’s form of remainder after n terms is

Rn =
xn

n!
· f (n)(θx), 0 < θ < 1.

For n → ∞ we have n > m. Therefore f (n)(θx) = 0 (using (6.30)). Also
xn

n!
→ 0 as

n→ ∞. (using 7.18). Thus, in this case we get

Rn → 0 as n→ ∞.

Hence, both the condition of Maclaurin’s Series Expansion are satisfied in this case. There-
fore

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + . . .+

xm

m!
fm(0)

= 1 + xm+
x2

2!
m(m− 1) + . . .+

xm

m!
m!

= 1 +mx+
m(m− 1)x2

2!
+ . . .+ xm.

Thus, if m, is a fixed positive integer, then we get a finite series expansion of (1 + x)m.

Case 2 : ‘m’ is not a positive integer.

We have,

f(x) = (1 + x)m

f ′(x) = m(1 + x)m−1

f ′′(x) = m((m− 1)(1 + x)m−2

...

f (n)(x) = m(m− 1)(m− 2) . . . (m− n+ 1)(1 + x)m−n ∀n ∈ N

Also,

f(0) = 1, f ′(0) = m, f ′′(0) = m(m− 1), . . . , f (n)(0) = m(m− 1) . . . (m− n+ 1)

Here, we will use Cauchy’s form of remainder. Therefore

Rn =
xn

(n− 1)!
(1− θ)n−1 · fn(θx)

= xn
(1− θ)n−1

(1 + θx)n−m
· m(m− 1) . . . (m− n+ 1)

(n− 1)!

= xn
(

1− θ

1 + θx

)n−1

(1 + θx)m−1 m(m− 1) . . . (m− n+ 1)

(n− 1)!
(6.31)
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Since,
|x| < 1, ∴ xn → 0 as n→ ∞. (6.32)

Also, from equation (6.29)

0 <
1− θ

1 + θx
< 1

Therefore (
1− θ

1 + θx

)n−1

→ 0 as n→ ∞ (6.33)

Also,

for m > 1, (1 + θx)m−1 < (1 + |x|)m−1 and
for m < 1, (1 + θx)m−1 < (1− |x|)m−1 (6.34)

=⇒ (1 + θx)m−1 is a finite real number. Thus, using above equations 6.32, 6.33, 6.34 in
6.31, we get

Rn → 0 as n→ ∞ for |x| < 1

Hence, both the condition of Maclaurin’s Series Expansion are satisfied. Therefore, we
have

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + . . .

(1 + x)m = 1 +mx+
m(m− 1)

2!
x2 + . . .

m(m− 1)(m− n+ 1)

n!
xn + . . .

Thus, for non positive integral value of ‘m’, we get a infinite series expansion of (1 + x)m.

Example 6.7. Assuming the validity of expansion by Maclaurin’s series, prove that

en cosx = 1 + x− 2x3

3!
− 22x4

4!
− 22x5

5!
+ · · ·

Solution. Since Maclaurin’s expansion is valid for the function f(x) = ex cosx, therefore

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + . . . (6.35)

We have

f(x) = ex cosx,

f ′(x) = ex cosx− ex sinx

=
√
2 ex

(
1√
2
cosx− 1√

2
sinx

)
=

√
2 ex cos

(
x+

π

4

)
Similarly, we get

fn(x) = 2
n
2 ex cos

(
x+

nπ

4

)
, n ∈ N.
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Also,

f(0) = 1, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −2, f iv(0) = −4, f v(0) = −4 etc.

Substituting these values of f(0), f ′(0), f ′′(0), f ′′′(0), f iv(0) and f v(0) in equation (6.35),
we get

ex cosx = 1 + x− 2x3

3!
− 22x4

4!
− 22x5

5!
+ · · ·

Example 6.8. Assuming the validity of expansion, expand ax and ex in powers of x by
Maclaurin’s theorem.

Solution. Let

f(x) = ax =⇒ f(0) = 1

f ′(x) = ax log a =⇒ f ′(0) = log a

f ′′(x) = ax(log a)2 =⇒ f ′′(0) = (log a)2

f ′′′(x) = ax(log a)3 =⇒ f ′′′(0) = (log a)3

and so on. Therefore, by Maclaurin’s series expansion, we have

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + . . .

Therefore, ax = 1 + x(log a) +
x2

2!
(log a)2 +

x3

3!
(log a)3 + . . . (6.36)

Putting a = e and log a = log e = 1 in equation (6.36), we get the Maclaurin’s series
expansion of ex as

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

In-text Exercise 6.3. Solve the following questions:

1. Assuming the validity of expansion by Maclaurin’s series, show that

(i) log secx = x2

2
+ x4

12
+ ...

(ii) log(1 + sinx) = x− x2

2
+ x3

6
− x4

12
+ ...

2. Expand by Maclaurin’s theorem
ex

ex + 1
as far as the term containing x3.

3. Show that by means of Maclaurin’s series expansion, that

log(1 + ex) = log 2 +
x

2
+
x2

8
− x4

192
+ ...

4. Assuming the validity of Maclaurin’s series expansion, find the series expansion of
f(x) = e2x for all real values of x.
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6.6 Summary
In this lesson, we have discussed following topics:

1. Cauchy’s Mean Value Theorem: Let there be two functions,f(x) and g(x). These
two functions shall be continuous on the interval, [a, b], and these functions are dif-
ferentiable on the range (a, b), and g′(x) ̸= 0 for all x ∈ (a, b). Then there will be a

point x = c in the given range or the interval such that,
f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)

2. Taylor’s Theorem with Lagrange’s Form of Remainder: If a function f is defined on
[a, a+ h], such that

(i) f and the derivatives f ′, f ′′,..., f (n−1) are continuous on [a, a+ h],

(ii) the nth derivative exist on (a, a+ h),

then there exists at least one point θ, 0 < θ < 1 such that

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn−1

(n− 1)!
f (n−1)(a) +

hn

n!
f (n)(a+ θh).

The (n + 1)th term i.e.
hn

n!
f (n)(a + θh) is called the Lagrange’s remainder after n

terms and is denoted by Rn.

3. Taylor’s Theorem with Cauchy’s Form of Remainder: If the remainder Rn is ex-
pressed as

Rn =
hn

(n− 1)!
(1− θ)n−1f (n)(a+ θh), (6.37)

then the above theorem is called Taylor’s Theorem with Cauchy’s Form of Re-
mainder and Rn is called Cauchy’s Remainder after n terms.

4. Taylor’s series Expansions of Functions: If a function f(x) is such that

(i) f(x) possesses continuous derivatives of all orders in [a, a+ h].

(ii) For 0 < θ < 1, Taylor’s remainder Rn = hn

n!
f (n)(a+ θh) tends to 0 as n→ ∞,

then

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + . . .+

hn

n!
f (n)(a) + . . . . (6.38)

5. Maclaurin’s series Expansions of Functions: If a function f defined on [0, h] is such
that

(i) f(x) possesses continuous derivatives of all order in [0, h],

(ii) Taylor’s remainder Rn → 0 as n→ ∞,
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then for each x ∈ [0, h]

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) + . . .+

xn

n!
f (n)(0) + . . .

This is called Maclaurin’s infinite series expansion of f(x).

6.7 Self-Assessment Exercises
1. Verify Cauchy’s Mean Value Theorem for the following functions:

f(x) = x(x− 1)(x− 2), g(x) = x(x− 2)(x− 3), a = 0, b =
1

2
.

2. Check the validity of Cauchy’s Mean Value Theorem for the following functions:

f(x) = x4, g(x) = x2, a = 1, b = 2.

3. Show that
(1− x)−1 = 1 + x+ x2 + x3 + ...

4. For −1 < x ≤ 1, show that

log(1− x) = −x− x2

2!
− x3

3!
− x4

4!
− ...

5. If f(x) = x3+2x2− 5x+11, find the value of f( 9
10
) with the help of Taylor’s series

for f(x+ h).

6. Apply Maclaurin’s theorem to prove

cos2 x = 1− x2 +
x4

3
+ ...

7. prove eax cos bx is equal to

1+ax+(a2−b2)x
2

2!
+a(a2−3b2)

x3

3!
+...+

xn

n!
(a2+b2)n/2eaθx cos

(
bθx+ n tan−1 b

a

)
.

8. Expand eax sin bx by Maclaurin’s theorem with Cauchy’s form of remainder.

6.8 Solutions to In-text Exercises
Exercise 6.1

1. (i) c = −π
4
∈ (−π/2, 0).

(ii) c = 1
2
∈ (0, 1).
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2. Let g(x) = x2, then using Cauchy’s Mean Value Theorem given result can be ob-
tained.

Exercise 6.2

1. f(x) = sinx = sin
(π
2
+ x− π

2

)
= sin(a+ h), where a = π/2 and h = x− π/2.

2. Using Taylor expansion, we can obtained the required expansion.

3. e1+h = e(eh)

4. tanx = 1 + 2
(
x− π

4

)
+ 2

(
x− π

4

)2
+ ...

Exercise 6.3

1. (i) By taking f(x) = log secx and substituting in Maclaurin’s expansion, required
result can be obtained.

(ii) Use the expansion of log(1 + x) to prove it.

2. Expansion is
1

2
+
x

4
− x3

48
+ ...

3. Use the expansion of log(1 + x) to prove it.

4. Expansion is e2x = 1 + 2x+
(2x)2

2!
+

(2x)3

3!
+

(2x)4

4!
+ ...

6.9 Suggested Readings
1. Narayan, Shanti (Revised by Mittal, P. K.). Differential Calculus. S. Chand, Delhi,

2019.

2. Prasad, Gorakh (2016). Differential Calculus (19th ed.) Pothishala Pvt. Ltd. Alla-
habad.

3. Thomas Jr., George B., Weir, Maurice D.,Hass, Joel (2014). Thomas Calculus (13th
ed.). Pearson Education, Delhi. Indian Reprint 2017.
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7.1 Learning Objectives
The learning objectives of this lesson are to:

• use differentiation to locate the stationary points of a function.

142
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• distinguish whether these stationary points are the points of maxima, minima or the
points of inflexion.

• understand the difference between local and global maxima and minima.

• to impart the knowledge of convergence of sequences and summation of series.

• to understand the concept of the sequence of partial sums in order to understand the
convergence of series.

7.2 Introduction

In lesson 5, we have learnt about various applications of differentiation. In this chapter,
we will use differentiation to find the maximum and minimum values of differentiable
functions useful for solving some applied problems. The terms maxima and minima refer
to extreme values of a function, that is, the maximum and minimum values that the function
attains. Also, we will learn here about convergence of sequence and series of real numbers.

7.3 Extremum of a Function

Let y = f(x) be a function of real variable defined in an interval [a, b]. The extremum of
f(x) in [a, b] is the extreme value of f(x) in [a, b]. That is, it is either the maximum value
(maxima) or the minimum value (minima) of f(x) in [a, b]. Geometrically, maxima and
minima of a function are its peaks and valleys, as shown in the following figure 7.3.

Figure 7.1: Maxima and Minima of a function.

The maxima and minima of a function are of two types,

1. Local Maxima and Local Minima

2. Absolute (Global) Maxima and Absolute (Global) Minima
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7.3.1 Local Maxima and Local Minima

Local maxima and minima are the maxima and minima of the function which arise in
a particular interval. Local maxima would be the value of a function at a point in a
particular interval for which the values of the function near that point are always less than
the value of the function at that point. Whereas local minima would be the value of the
function at a point where the values of the function near that point are greater than the value
of the function at that point. It is possible for a function to have as many local maxima and
minima as it needs.

Definition 7.1. (Local Maxima) Let y = f(x) be a function defined on [a, b]. Then f(x)
is said to attain a local maximum at x = c, if there exist a neighborhood of c (c−δ, c+δ) ⊆
[a, b] such that

f(x) ≤ f(c) ∀ x ∈ (c− δ, c+ δ).

In this case, f(c) is called the local maximum value of f(x) at x = c.

Definition 7.2. (Local Minima) Let y = f(x) be a function defined on [a, b]. Then f(x)
is said to attain a local minimum at x = c if there exist a neighborhood of c (c− δ, c+ δ) ⊆
[a, b], such that

f(x) ≥ f(c) ∀ x ∈ (c− δ, c+ δ).

In this case, f(c) is called the local minimum value of f(x) at x = c.

Note. 1. A local maxima (or local minima) is also known as a relative maxima (or
relative minima).

2. A function f(x) defined in a given domain [a, b] may possess many local maxima
and local minima as shown in the following figure 7.3.1.

Figure 7.2: Local maxima at c1, c3 and Local minima at c2 and c4.

A.C.-22.11.2022 
Appendix-111



7.3. EXTREMUM OF A FUNCTION 145

7.3.2 Global Maxima and Global Minima
The highest point of a function within the entire domain is known as the absolute maxima
of the function whereas the lowest point of the function within the entire domain of the
function, is known as the absolute minima of the function. There can only be one absolute
maximum of a function and one absolute minimum of the function over the entire domain.
The absolute maxima and minima of the function are also called as the global maxima and
global minima of the function. The Global (Absolute) maxima of a function f(x) defined
on [a, b] is the greatest value of f(x) in [a, b]. Similarly, the Global (Absolute) minima of
a function f(x) defined on [a, b] is the least value of f(x) in [a, b]. Precisely, we have the
following definitions:

Definition 7.3. (Absolute Maxima) Let f(x) be a real function defined on an interval
I = [a, b]. Then, f(x) is said to attain the global maximum at x = c, if

f(x) ≤ f(c) ∀ x ∈ I.

Here, f(c) is called the global maximum value of f(x) in the interval I.

Definition 7.4. (Absolute Minima) Let f(x) be a real function defined on an interval
I = [a, b]. Then, f(x) is said to attain the global minimum at x = c, if

f(x) ≥ f(c) ∀ x ∈ I.

Here, f(c) is called the global minimum value of f(x) in the interval I .

Figure 7.3: (Global maxima and Global minima of a function.)

Note. The Global extrema of a function f(x) defined on [a, b] occurs either at the points of
local extrema or at the end points a, b of [a, b].

7.3.3 A Necessary condition for Local Extrema
Let y = f(x) be a differentiable function on (a, b). If f(x) has a local extremum at x =
c ∈ (a, b), then f ′(c) = 0.
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Note. (i) The necessary condition stated above holds for a differentiable function. How-
ever, a local extremum may occur at a point c at which f(x) is not differentiable (see
Figure 7.3.4).

(ii) A point c ∈ [a, b], such that f ′(c) = 0 or f ′(c) does not exist, is called a critical
point. If f ′(c) = 0, then c is called a stationary point.

(iii) The condition cited above is not a sufficient condition.

Example 7.1. Let f(x) = x3. Then at x = 0 function is differentiable and derivative is 0
but its is neither a point of maxima nor a point of as shown in figure 7.3.3.

Figure 7.4: (Graph of y = x3)
.

7.3.4 How to find Maxima and Minima of a Function
We have the following tests to find the local extrema of a differentiable function.

1. First Order Derivative Test

2. Second-Order Derivative Test

First Order Derivative Test
The first order derivative test gives a sufficient condition for f(x) to have local extremum
at x = c. It is stated as following:

Let f(x) be a differentiable function on (a, b). Then

(i) if f ′(x) changes sign from positive to negative as x passes through c from left to
right, then f(x) has a local maximum at x = c.
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(ii) if f ′(x) changes sign from negative to positive as x passes through c from left to
right, then f(x) has a local minimum at x = c.

(iii) if f ′(x) does not changes sign as x passes through c, then f(x) has no local extrema
at x = c.

Figure 7.5: Graph for first derivative test.

Algorithm for finding the Local Maxima and Local Minima of a Func-
tion using first derivative test

Step-1 : For the function y = f(x), find
dy

dx
= f ′(x).

Step-2 : Put
dy

dx
= 0 and solve this equation for x. Let c1, c2, ..., cn be the roots of this

equation, then these points are the stationary points.

Step-3 : Choose one stationary point c1 and check the change in the sign of the function as
x passes through c from left to right.

(a) If
dy

dx
changes its sign from positive to negative as x passes through c1, then the

function attains a local maximum at x = c1.

(b) If
dy

dx
changes its sign from negative to positive as x passes through c1, then the

function attains a local minimum at x = c1.

Step-4 : Repeat the process for all other vales of x = c2, c3, ..., cn.
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Example 7.2. Find all the points of local maxima and minima of the function

f(x) = x3 − 6x2 + 9x− 8.

Hence, find the corresponding local maximum and minimum values.

Solution. Let y = f(x) = x3 − 6x2 + 9x− 8. Then,

dy

dx
= f ′(x) = 3(x2 − 4x+ 4) = 3(x− 1)(x− 3).

The stationary points of f(x) are given by f ′(x) = 0. Thus,

dy

dx
= f ′(x) = 0 ⇒ x = 1, 3.

Now,

if x < 1, then (x− 1) < 0 and x− 3 < 0 =⇒ f ′(x) > 0;

if 1 < x < 3, then (x− 1) > 0 and x− 3 < 0 =⇒ f ′(x) < 0 and
if x > 3, then (x− 1) > 0 and x− 3 > 0 =⇒ f ′(x) > 0.

−∞

+

1 3

−

∞

+

Signs of f ′(x) for different values of x

Clearly, f ′(x) changes sign from positive to negative as x passes through 1. So, x = 1 is
point of local maxima. The corresponding local maximum value is f(1) = −4.

Also, f ′(x) changes sign from negative to positive as x passes through 3. So, x = 3 is a
point of local minimum and the corresponding local minimum value is f(3) = −8.

Example 7.3. Find the points at which f given by

f(x) = (x− 2)4(x+ 1)3

has (i) local maxima (ii) local minima (iii) no local extremum.

Solution. We have,

f(x) = (x− 2)4(x+ 1)3

⇒ f ′(x) = 4(x− 2)3(x+ 1)3 + 3(x− 2)4(x+ 1)2

⇒ f ′(x) = (x− 2)3(x+ 1)2(7x− 2).

⇒ f ′(x) = (x− 2)2(x+ 1)2(x− 2)(7x− 2).

Now, for stationary points
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Now,

f ′(x) = 0 ⇒ x = −1, 2,
2

7
.

=⇒ The stationary points are x = −1, 2 and
2

7
. Since (x− 2)2(x+1)2 is always positive,

therefore the sign of f ′(x) depends upon the sign of (x− 2)(7x− 2). The changes in sign

of f ′(x) as x increases through −1,
2

7
and 2 are given by

f ′(x) > 0 if x < −1,

f ′(x) > 0 if − 1 < x <
2

7
,

f ′(x) < 0 if
2

7
< x < 2,

and f ′(x) > 0 if x > 2.

−∞

+

−1 2
7

2

−

∞

++

Signs of f ′(x) for different values of x.

Therefore, f ′(x) changes its sign from positive to negative as x passes through
2

7
. So,

x =
2

7
is a point of local maximum.

f ′(x) changes its sign from negative to positive as x passes through 2. So, x = 2 is a point
of local minimum.

Since, there is no change in the sign of f ′(x) as increases through −1. Therefore, no local
extremum exist at x = −1.

In-text Exercise 7.1. Solve the following questions:

1. Find all the points of local maxima and local minima of f(x) = x3 − 6x2 +12x− 8.

2. Find the local maxima and local minima of the function f(x) = sinx + cosx, 0 <
x < π

2
using the first derivative test.

3. Find all the points of local maxima and local minima of f(x) = cos x, 0 < x < π
using the first derivative test.

4. Find the points at which the function f(x) = (x − 1)(x + 2)2 has (i) local maxima
(ii) local minima (iii) no local extremum.
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Second-Order Derivative Test
Let y = f(x) be a function defined on (a, b) and f ′(x) exists at each x ∈ (a, b). Then and
it is two times differentiable at at a point c ∈ I . Then

1. f(x) has a local maximum at x = c ∈ (a, b), if f ′(c) = 0 and f ′′(c) < 0.

2. f(x) has a local minimum at x = c ∈ (a, b), if f ′(c) = 0 and f ′′(c) > 0.

3. The test fails if f ′(c) = 0 and f ′′(c) = 0.

Example 7.4. Examine the following function for local maximum and minimum values

f(x) = x5 − 5x4 + 5x3 − 1.

Solution. Given

f(x) = x5 − 5x4 + 5x3 − 1.

=⇒ f ′(x) = 5x4 − 20x3 + 15x2.

Now,

f ′(x) = 0

=⇒ 5x4 − 20x3 + 15x2 = 0

=⇒ 5x2(x− 1)(x− 3) = 0

=⇒ x = 0, 1, 3.

Therefore, the stationary (critical) points are x = 0, 1 and 3. Now,

f ′′(x) = 20x3 − 60x2 + 30x

For x = 1, f ′′(1) = 20− 60 + 30 = −10 < 0.

For x = 3, f ′′(3) = 20(3)3 − 60(3)2 + 30(3) = 540− 540 + 90 = 90 > 0.

Therefore by the second order derivative Test, x = 1 is a point of local maximum and x = 3
is a point of local minimum. Also f ′′(0) = 0, therefore the second order derivative test fails
for x = 0.

In-text Exercise 7.2. Solve the following questions:

1. Find all the points of local maxima and minima of the function f(x) = 2x3− 21x2+
36x− 20. Also, find the corresponding maximum and minimum values.

2. Show that the function f(x) = x3 + x2 + x+ 1 doesn’t has a point of local maxima
and local minima.

3. Find the points of local maxima and minima for the following functions

(i) f(x) = (x− 1)(x+ 2)2.
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(ii) f(x) = x+
√
1− x, x ≤ 1.

(iii) f(x) = sinx+ cosx, 0 < x < π
2
.

(iv) f(x) = 2 cosx+ x, 0 < x < π.

4. Find the maximum profit that a company can make, if the profit function is given as
P (x) = 24x− 18x2 + 41.

5. If f(x) = a log |x| + bx2 + x has extreme values at x = −1 and at x = 2, then find
the value of constants a and b.

6. Show that the maximum value of
(
1

x

)x

is e(
1
e).

7.3.5 Absolute Maximum and Absolute Minimum in a closed interval
Let y = f(x) be a function defined on a closed interval [a, b]. Let f ′(x) exists and it is
continuous at x ∈ (a, b). In order to find the Absolute (Global) extrema of f(x) in [a, b],
we first find the local extrema of f(x) in (a, b) and then find f(a) and f(b). Then

(i) the absolute maximum of f(x) in [a, b] = max { local maxima of f(x) in (a, b), f(a),
f(b). }

(ii) the absolute minimum of f(x) in [a, b] = min { local minima of f(x) in (a, b), f(a),
f(b). }

Example 7.5. Find the largest and smallest values of the polynomial x3 − 18x2 + 96x in
the interval [0, 9].

Solution. The given polynomial function

f(x) = x3 − 18x2 + 96x

is differentiable on (0, 9) and

f ′(x) = 3x2 − 36x+ 96.

For the critical points we have

f ′(x) = 3x2 − 36x+ 96 = 0

=⇒ (x− 8)(x− 4) = 0

=⇒ x = 4, 8 ∈[0, 9].

Therefore, x = 4, 8 are the points of local maxima and local minima. Now, to find the
absolute extrema of f(x) in [0, 9], we consider the values of f(x) at the points of local
extrema (i.e. x = 4, 8) as well as the values f(a) and f(b) at the end points a = 0, b = 9.

f(0) = 0

f(4) = (4)3 − 18(4)2 + 96(4) = 160

f(8) = (8)3 − 18(8)2 + 96(8) = 128

f(9) = (9)3 − 18(9)2 + 96(9) = 135.
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Therefore, the absolute minima is smallest value of the given polynomial occurring at x = 0
and the largest value of the given polynomial is occurring at x = 4. Thus the largest value
is 160 and smallest value is 0.

In-text Exercise 7.3. Solve the following questions:

1. Find the maximum (largest) and minimum (smallest) values of f(x) = sinx in the
interval [π, 2π].

2. Find the absolute maximum and absolute minimum values of the function f(x) =
x2 − 2x+ 4 = 0 in the interval [−3, 1].

3. Find both the maximum and minimum values of the f(x) = 2x3 − 15x2 + 36x + 1
on the interval [1, 5].

4. Find the global extrema of the given function f(x) = x+sin 2x in the interval [0, 2π].

7.3.6 Applications of Maxima and Minima
In the following section, we shall apply the theory of maxima and minima to solve practical
problems involving the use of the same. For example to maximize the area, volume, profit
etc.

Example 7.6. Show that all the rectangles with a given perimeter, the square has the largest
area.

Solution. Let x and y be the lengths of two sides of the rectangle of fixed parameter P, and
let A be its area. Then,

P = 2(x+ y) (7.1)

and

A = xy (7.2)

Substituting the value of y from (7.1) into (7.2), we get

A = xy = x

(
P

2
− x

)
=

(
Px

2
− x2

)

=⇒ dA

dx
=

(
P

2
− 2x

)
and

d2A

dx2
= −2.

The critical points of A are given by
dA

dx
= 0.

∴

(
P

2
− 2x

)
= 0 =⇒ P = 4x =⇒ 2x+ 2y = 4x =⇒ x = y.

Also,

d2A

dx2
= −2 < 0 at x = y.

Hence A is maximum when x = y i.e. the rectangle is a square.
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Example 7.7. Show that the height of an cylinder of given surface and greatest volume is
equal to the radius of its base.

Solution. Let r be the radius of the circular base, h be the height, S be the surface and V
the volume of the cylinder. Therefore,

S = πr2 + 2πrh, (7.3)

and

V = πr2h (7.4)

Since surface is given, there S is constant and V is a variable. Also, h, r, are variables.
Substituting the value of h, as obtained from (7.3), in (7.4), we get

V = πr2
(
S − πr2

2πr

)
=

(
Sr − πr3

2

)
, (7.5)

which gives V in terms of single variable r. Now,

dV

dr
=

(
S − 3πr2

2

)
, (7.6)

is 0 when r =

√
S

3π
. Thus V has only one stationary value. As V must be positive, we

have

Sr − πr3 > 0 i.e. Sr > πr3 or r <

√
S

π
.

Thus r varies in the interval (0,

√
S

π
). Now V = 0 for the points r = 0 and

√
S

π
and is

positive for every other admissible value of x. Hence V is greatest for r =

√
S

3π
.

Substituting this value of r in (7.3), we get

h =
S − πr2

2πr
=
S − π · S

3π

2π
√

S
3π

=

√
S

3π

Hence, for a cylinder of greatest volume and given surface h = r.

7.4 Sequences
Sequences occur frequently in analysis, and they appear in many contexts. While we are
all familiar with sequences, it is useful to have a formal definition.
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Definition 7.5. A sequence of real number is defined as a function F : N → R, where N is
the set of natural number and R is the set of real numbers. A sequence may be written as

< f1, f2, f3..., fn, ... > or < fn > or (fn).

The real numbers f1, f2, f3..., fn, ... are called the terms or elements of the sequence.
f1 is called the first term, f2 is called the second term,...,fn is called the nth term of the
sequence< fn > .Analogous definitions can be given for the sequence of natural numbers,
integers, etc. In this lesson, we shall consider only sequences of real numbers.

Example 7.8. Following are the sequences of real numbers:

1. < n >=< 1, 2, 3, 4, ... >

2. < n2 >=< 1, 4, 9, 16, ... >

3. < (−1)n >=< −1, 1,−1, 1, ... >

4. <
n

n+ 1
>=<

1

2
,
2

3
,
3

4
,
4

5
, ... >

5. < 1 + (−1)n >=< 0, 2, 0, 2, ... >

From the above examples, we can observe that in a sequence all the terms can be distinct
or repeating. Also the sequence has always an infinite number of elements.

Definition 7.6 (Range of a sequence). The set of all distinct elements of a sequence is
called the range set of the given sequence. The range set of the sequence < an > is the set
{an : n ∈ N}.

Example 7.9. Range sets of the sequences in Example 7.8 are:

1. {1, 2, 3, 4, ...}

2. {1, 4, 9, 16, ...}

3. {−1, 1}

4. {1
2
,
2

3
,
3

4
,
4

5
, ...}

5. {0, 2}

Thus, it can be observed that the range set of a sequence may be finite or infinite.
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7.4.1 Bounded sequence

Definition 7.7. A sequence < an > is said to be bounded above, if there exists a real
number M such that an ≤ M ∀ n ∈ N and the real number M is called an upper bound
of the sequence < an > .

Definition 7.8. A sequence < an > is said to be bounded below, if there exists a real
number M0 such that an ≥ M0 ∀ n ∈ N and the real number M0 is called an lower
bound of the sequence < an > .

Definition 7.9. A sequence which is bounded above as well as bounded below is called a
bounded sequence. Eventually, < an > is bounded if there exist two real numbers M0 and
M such that

M0 ≤ an ≤M ∀ n ∈ N

Example 7.10. 1. The sequence < n >=< 1, 2, 3, 4, ... > is bounded below by 1 but it
is not bounded above.

2. The sequence < n2 >=< 1, 4, 9, 16, ... > is bounded below by 1 but not bounded
above.

3. The sequence< (−1)n >=< −1, 1,−1, 1, ... > is bounded, −1 being a lower bound
and 1 is an upper bound.

4. The sequence <
n

n+ 1
>=<

1

2
,
2

3
,
3

4
,
4

5
, ... > is bounded below by

1

2
but it is not

bounded above.

5. The sequence < 1 + (−1)n >=< 0, 2, 0, 2... > is bounded below by 0 and bounded
above by 2.

7.4.2 Convergence of a sequence

A fundamental concept in mathematics is that of convergence. Consider the sequences
listed in Example 7.8 and observe the way how a sequence < an > vary as n becomes
larger and larger.

Example 7.11. 1. < n >=< 1, 2, 3, 4, ... >. In this sequence, the terms becomes larger
and larger and tends to +∞ as n→ +∞ .

2. < n2 >=< 1, 4, 9, 16, ... >. In this sequence also the terms becomes larger and
larger and tends to +∞ as n→ +∞.

3. <
n

n+ 1
>=<

1

2
,
2

3
,
3

4
,
4

5
, ... >. In this sequence the terms come closer and closer

to 1 as n becomes larger and larger. We write <
n

n+ 1
>→ 1 as n→ ∞.
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4. < 1 + (−1)n >=< 0, 2, 0, 2... >. In this sequence, the terms of the sequence
oscillates with values 0 and 2, and does not come closer to any number as n becomes
larger and larger.

Now, we make the precise definition of a convergent sequence of real numbers.

Definition 7.10. A sequence< an > in R is said to converge to a real number a if for every
ϵ > 0, there exists positive integer k (in general depending on ϵ) such that

|an − a| < ϵ, ∀ n ≥ k.

The number a is then called the limit of the sequence < an > and < an > is called a
convergent sequence.

Note. 1. If < an > converges to a, then we denote the convergence by writing lim
n→∞

<

an >= a, or < an >→ a as n→ ∞ or sometimes simply we write an → a.

2. The inequality
|an − a| < ϵ ∀ n ≥ k

is also written as

a− ϵ < an < a+ ϵ ∀ n ≥ k

or
an ∈ (a− ϵ, a+ ϵ) ∀ n ∈ k

Thus, lim
n→∞

an = a, if and only if for every ϵ > 0, there exists k ∈ N such that

an ∈ (a− ϵ, a+ ϵ) ∀ n ≥ k.

3. Suppose < an > is a sequence and a ∈ R. Then to show that < an > does not
converge to a, we should be able to find an ϵ > 0 such that infinitely may terms of
the sequence are outside the interval (a − ϵ, a + ϵ) or there exist k ∈ N, such that
an /∈ (a− ϵ, a+ ϵ) ∀ n ≥ k.

4. The different values of ϵ can result in different N , i.e. the number N may vary as ϵ
varies.

Example 7.12. Prove that every constant sequence is a convergent sequence.

Solution. Let < an >=< c > be a constant sequence, where c ∈ R. Then, for any given
ϵ > 0, there exists positive integer k = 1 ∈ N

|an − c| = |c− c| = 0 < ϵ ∀ n ≥ k = 1. (7.7)

Therefore, by the definition an converges to c. Thus, the given constant sequence is con-
vergent and converges to the constant term of the sequence.

Example 7.13. Show that the sequence < 1
n
> is convergent and it converges to 0.
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Solution. Since the given sequence is < an >=< 1
n
>=< 1, 1

2
, 1
3
, 1
4
, ... >. If the given

sequence is convergent then according to definition of convergence, for every ϵ > 0, there
exists positive integer N (in general depending on ϵ) such that |an − l| < ϵ, for n ≥ N.
Let ϵ be an arbitrary positive real number. Then

|an − 0| =
∣∣∣∣ 1n − 0

∣∣∣∣ = 1

n
< ϵ, for n >

1

ϵ
(7.8)

Let k be a positive integer such that k > 1
ϵ
. Then,

|an − 0| < ϵ, for n ≥ k,

Hence, the given sequence is convergent and converges to 0. That is lim
n→∞

1

n
= 0.

7.4.3 Non-Convergent Sequences
A sequence which does not converge is called a divergent sequence.

Definition 7.11. If a sequence < an > is such that for every M > 0, there exists k ∈ N
such that

an > M, ∀ n ≥ k,

then we say that < an > diverges to +∞ and it is denoted as lim
n→∞

an = +∞.

Definition 7.12. If a sequence < an > is such that for every M > 0, there exists k ∈ N
such that

an < −M, ∀ n ≥ k,

then we say that < an > diverges to −∞ and it is denoted as lim
n→∞

an = −∞.

Definition 7.13. A sequence that diverges to either +∞ or −∞ is said to be a divergent
sequence.

Definition 7.14. A sequence that diverges to neither +∞ nor −∞ is said to be a non
divergent sequence.

Example 7.14. Following sequences are non convergent sequences:

1. The sequence < n2 >=< 1, 4, 9, 16, ... > diverges to +∞.

2. The sequence < −4n >=< −4,−8,−12,−16, ... > diverges to −∞.

3. The sequence < (−1)n.n >=< −1, 2,−3, 4, ... > neither diverges to +∞ nor −∞.

Definition 7.15. A bounded sequence is said to oscillate finitely, if it is neither convergent
nor divergent.

Definition 7.16. A sequence is said to oscillate infinitely, if

1. it is not bounded and
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2. it neither converges nor diverges.

Example 7.15.
The sequence < (−1)n >=< −1, 1,−1, 1, ... > oscillates finitely.

The sequence < (−1)n.n >=< −1, 2,−3, 4,−5, 6, ... > oscillates infinitely.

The sequence < 1 + (−1)n >=< 0, 2, 0, 2... > oscillates finitely.

Definition 7.17 (Cauchy Sequence). A sequence < an > is said to be a Cauchy sequence
if for every ϵ > 0, there exists k ∈ N such that

|an − am| < ϵ ∀ n,m ≥ k.

Theorem 7.1. If < an >, < bn > be two convergent sequences such that lim an = a,
lim bn = b, then

(i) lim(an ± bn) = lim an ± lim bn = a± b.

(ii) lim(anbn) = (lim an) · (lim bn) = ab.

(iii) lim

(
an
bn

)
=

lim an
lim bn

=
a

b
. (b ̸= 0, bn ̸= 0 ∀n)

Example 7.16. Prove that lim
n→∞

1

n2
= 0.

Solution. We know, lim
n→∞

1

n
= 0. Therefore by theorem 7.1, we have

lim
n→∞

1

n2
= lim

n→∞

(
1

n
· 1
n

)
= lim

n→∞

1

n
· lim
n→∞

1

n
= 0.

Theorem 7.2 (Sandwich (Squeeze) Theorem). Let f , g and h be real functions such that
f(x) ≤ g(x) ≤ h(x) for all x in the common domain of definition. For some real number
a, if

lim
x→a

f(x) = l, lim
x→a

h(x) = l,

then
lim
x→a

g(x) = l.

Example 7.17. Using the above inequality prove that

lim
x→0

sinx

x
= 1.

Solution. We know,

cosx <
sinx

x
< 1.

Also, it is clear that lim
x→0

cosx = 1 and limx→0 1 = 1. Hence, by squeeze theorem 7.2,

lim
x→0

sinx

x
= 1.

Hence, we proved.
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Theorem 7.3 (D’Alemberts Limit Theorem). Let < an > be a sequence of positive real

numbers such that L = lim

(
an+1

an

)
exists. If L < 1, then < an > converges and

lim(an) = 0.

Example 7.18. Prove that

lim
n→∞

xn

n!
= 0.

Solution. Let < an >=<
xn

n!
> be a sequence of real numbers. Then

an =
xn

n!
, an+1 =

x(n+1)

(n+ 1)!

and

an+1

an
=

x(n+1)

(n+ 1)!
· n!
xn

=
x

n+ 1
. (7.9)

Also,

lim
n→∞

an+1

an
= lim

n→∞

x

n+ 1
=

lim
n→∞

x

n

1 + lim
n→∞

1

n

= 0 < 1.

Hence, by the above theorem 7.3

lim
n→∞

xn

n!
= 0.

Remark. Some important results based on the theorems of sequences are listed below

1. A sequence cannot converge to more than one limit.

2. Every convergent sequence is bounded but the converse is not true.

3. A sequence of real numbers converges if and only if it is a Cauchy Sequence.

4. If lim
n→∞

an = l, then lim
n→∞

a1 + a2 + ...+ an
n

= l.

In-text Exercise 7.4. Solve the following questions:

1. By using the definition of convergence, show that

lim
n→∞

1 + 2 + 3...+ n

n2
=

1

2

2. Show that the sequence < (−3)n > does not converges.

3. Prove that lim
n→∞

2n2 + 3

3n2 + 5n
=

2

3

4. If an = 2− 1

2n
, find lim

n→∞
an.

5. Prove that lim
x→0

1− cosx

x
= 0.
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7.5 Infinite Series
An infinite series of real numbers is the sum of infinitely many terms of a sequence of real
numbers and it is written in the form

∞∑
n=1

an = a1 + a2 + a3 + ...

where each an is a real number. an is called the nth term of the series
∞∑
n=1

an.

Example 7.19. Following are the examples of series of real numbers:

1.
∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+ ...

2.
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ ...

Now the next question arise, how we can find the sum of infinite series. Because adding an
infinite number of terms in not a easy task. Therefore, instead of finding the sum of infinite
terms we will find the limit of its sequence of partial sums. A partial sum of an infinite
series is a finite sum of the form

k∑
n=1

an = a1 + a2 + a3 + ...+ ak

Therefore, the sequence of partial sums of the series
∞∑
n=1

an is the sequence < Sn >, where

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

Sn = a1 + a2 + a3 + ...+ an.

Let’s take an example to see how partial sums can be used to evaluate infinite series.

Example 7.20. Suppose water is flowing from a tank into a pond such that 1000 liters
enters the pond in the first hour. During the second hour, an additional 500 liters of water
enters the pond. The third hour, 250 liters more water enters into the pond. Assume this
pattern continues such that each hour half as much water enters the pond as did the previous
hours. If this continues forever, what can we say about the amount of water in the pond?
Will the amount of water continue to get arbitrarily large, or is it possible that it approaches
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some finite amount? To answer this question, we look at the amount of water in the pond
after k hours. Let Sk denote the amount of water in the pond (measured in thousands of
liters) after k hours, we see that

S1 = 1

S2 = 1 + 0.5 = 1 +
1

2

S3 = 1 + 0.5 + 0.25 = 1 +
1

2
+

1

4

S4 = 1 + 0.5 + 0.25 + 0.125 = 1 +
1

2
+

1

4
+

1

8

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1 +
1

2
+

1

4
+

1

8
+

1

16
...

From the above we can observe that the obtained sums follows a pattern, therefore we can
find the amount of water in the pond after k hours as

Sk = 1 +
1

2
+

1

4
+

1

8
+

1

16
+ ...+

1

2k−1
=

k∑
n=1

(
1

2

)n−1

.

Thus, we have the sequence of partial sums as < Sk >=< S1, S2, ..., Sk, ... >. Now, we
wants to find what happens as k → ∞. Symbolically, the amount of water in the pond as
k → ∞ is given by the infinite series

∞∑
n=1

(
1

2

)n−1

= 1 +
1

2
+

1

4
+

1

8
+

1

16
+ ...

At the same time, as k → ∞ , the amount of water in the pond can be calculated by
evaluating lim

k→∞
Sk. Therefore, the behavior of the infinite series can be determined by

looking at the behavior of the sequence of partial sums Sk . If the sequence of partial
sums < Sk > converges, we say that the infinite series converges, and its sum is given by
lim
k→∞

Sk . If the sequence < Sk > diverges, we say the infinite series diverges. Now we will
determine the limit of the sequence of partial sums < Sk > . By, simplifying some of the
obtained partial sums, we see that

S1 = 1

S2 = 1 +
1

2
=

3

2

S3 = 1 +
1

2
+

1

4
=

7

4

S4 = 1 +
1

2
+

1

4
+

1

8
=

15

8

S5 = 1 +
1

2
+

1

4
+

1

8
+

1

16
=

31

16
.
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Plotting some of these values, it appears that the sequence < Sk > could be approaching 2.

Figure 7.6: The graph shows that the sequence of partial sums < Sk >→ 2 as n→ ∞.

Since, this sequence of partial sums converges to 2, we say the infinite series converges to
2 and write

∞∑
n=1

(
1

2

)n−1

= 2.

Thus, we conclude that the amount of water in the pond will get arbitrarily close to 2000
liters as the amount of time gets sufficiently large.
This series is an example of a geometric series. We will provide an analytic way later that
can be used to prove that lim

k→∞
Sk = 2.

7.6 Convergence and Divergence of an Infinite Series

Consider the infinite series
∞∑
n=1

an. Let < Sn > be the sequence of partial sums of
∞∑
n=1

an.

Then,

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3
...

...
Sk = a1 + a2 + a3 + ...+ ak.

...
...

Definition 7.18. The infinite series
∞∑
n=1

an is said to converge to the sum S if and only if its
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sequence of partial sums < Sn > converges to S. Then we write

∞∑
n=1

an = S.

Also, if the sequence of partial sums diverges, we have the divergence of the series, and if
the sequence of partial sums oscillates, then the series also oscillates.

Geometric series

A geometric series
∞∑
n=1

rn−1 = 1 + r + r2 + r3 + . . . (r > 0)

is the sum of an infinite number of terms that have a constant ratio between successive
terms. This geometric series converges if r < 1 and it diverges if r ≥ 1.

Example 7.21. Check the convergence and divergence of the following geometric series:

(a)
∑ 1

4n
=

1

4
+

1

42
+

1

43
+ . . . is convergent. (∵ r = 1

4
< 1)

(b) The series
∑

1 = 1 + 1 + 1 + . . . is divergent. (∵ r = 1)

(c)
∑

4n = 4 + 42 + 43 + . . .is divergent. (∵ r = 4 > 1)

Example 7.22. Show that the series

1

1.2
+

1

2.3
+

1

3.4
+ . . .

is convergent.

Solution. Let < Sn > be the sequence of partial sums of the given series. Then

Sn =
1

1.2
+

1

2.3
+

1

3.4
+ . . .+

1

n(n+ 1)

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1

∴ lim
n→∞

< Sn >= lim
n→∞

〈
1− 1

n+ 1

〉
= 1− 0 = 1, as lim

n→∞

1

n+ 1
= 0.

Since, the sequence of partial sums < Sn > converges to 1, therefore the given series also
converges to 1.
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p-series

The infinite series of real numbers

∞∑
n=1

1

np
, p ∈ R,

is known as a p-series. It converges if p > 1 and diverges if p ≤ 1.

Example 7.23. Check the convergence or divergence of the following p-series:

1.
∑

1
n3 = 1

13
+ 1

23
+ 1

33
+ · · · converges. (∵ p = 3 > 1)

2.
∑

1
n
= 1 + 1

2
+ 1

3
+ · · · diverges. (∵ p = 1)

3.
∑

1√
n
= 1 + 1√

2
+ 1√

3
+ · · · diverges. (∵ p = 1

2
< 1)

4.
∑

1
n5/2 is convergent. (∵ p = 5

2
> 1)

Theorem 7.4 (A necessary condition for convergence). If the series
∞∑
n=1

an converges,

then lim
n→∞

an = 0.

Proof. Let < Sn > be the sequence of partial sums of the series
∑
an.

Then
Sn = a1 + a2 + . . .+ an−1 + an,

Sn−1 = a1 + a2 + . . .+ an−1.

Now

Sn − Sn−1 = an. (7.10)

Since, the series
∑
an converges, therefore < Sn > converges. Let lim

n→∞
Sn = l, then

lim
n→∞

Sn−1 = l (7.11)

From equation (7.10) and (7.11), we have

lim
n→∞

an = lim
n→∞

Sn − lim
n→∞

Sn−1 = l − l = 0.

Hence, lim
n→∞

an = 0.

Example 7.24. Show, by an example, that the converse of above theorem is not true i.e. if
lim
n→∞

an = 0 then series may or may not be convergent.
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Solution. The series
∑

an =
∑ 1

n
is divergent (by p-series).

But lim
n→∞

an = lim
n→∞

1

n
= 0.

Thus, we see that lim
n→∞

an = 0, but the series
∑

an =
∑ 1

n
is divergent.

Remark. If lim
n→∞

an ̸= 0, then the series
∑
an cannot converge.

Proof. Suppose
∑
an converges. Then by the above theorem, lim

n→∞
an = 0, which is con-

trary to the given condition. Hence the remark.

Example 7.25. Show that series∑ n

n+ 1
=

1

2
+

2

3
+

3

4
+ · · ·

is not convergent

Solution. We have an =
n

n+ 1
=

1

1 + 1
n

Therefore lim
n→∞

an = lim
n→∞

1

1 + 1
n

= 1 ̸= 0.

Hence, by the above remark, the given series is not convergent.

Theorem 7.5 (Cauchy’s Principle of Convergence). A necessary and sufficient condition
for a series

∑
an to converge is that to each ε > 0, there exists a positive integer m, such

that
|am+1 + am+2 + . . .+ an| < ε, for all n ≥ m.

Example 7.26. Show that the series

∞∑
n=1

(
1

n

) 1
n

is not convergent.

Solution. Let an =

(
1

n

) 1
n

, so that log an =
1

n
log

1

n
.

or
log an =

log 1− log n

n
=

− log n

n

∴

lim
n→∞

log an = − lim
n→∞

log n

n
,which is

∞
∞

form

= − lim
n→∞

1
n

1
(by L’Hospital’s Rule)
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= − lim
n→∞

1

n
= 0.

Now,
lim
n→∞

log an = 0 ⇒ log ( lim
n→∞

an) = 0

⇒ lim
n→∞

an = e0 = 1 ̸= 0.

Hence
∑
an is not convergent.

In-text Exercise 7.5. Solve the following questions:

1. Test for convergence of the series
∑

cos

(
1

n

)
.

2. Show that the series
∞∑
n=1

(−1)n−1 oscillates.

3. Show that the series √
1

4
+

√
2

6
+ ...+

√
n

2(n+ 1)
+ ...

is not convergent.

4. Test for the convergence of the series
∞∑
n=1

(−1)n · n.

7.7 Summary
Following points have been discussed in this lesson:

1. Maxima and minima are the peaks and valleys in the curve of a function.

2. There can be only one absolute maxima of a function and one absolute minimum of
a function over the entire domain, whereas there may be several local maxima and
local minima.

3. The maxima and minima are collectively known as the “Extrema”.

4. If there is a function that is continuous, it must have maxima and minima or local
extrema. Also, if the given function is monotonic, the maximum and minimum values
lie at the endpoints of the domain of the definition of that function.

5. The concept of Maxima and Minima is used to solve some practical problems.

6. A sequence < an > in R is said to converge to a real number a if for every ϵ > 0,
there exists positive integer N (in general depending on ϵ) such that

|an − a| < ϵ, ∀ n ≥ N,

where the number a is called the limit of the sequence.

A.C.-22.11.2022 
Appendix-111



7.8. SELF-ASSESSMENT EXERCISES 167

7. Geometric series
∞∑
n=1

rn−1 converges for |r| < 1 and diverges for |r| ≥ 1.

8. The series
∞∑
n=1

1

np
converges for p > 1 and diverges for p ≤ 1.

9. If the series
∑
an converges, then lim

n→∞
an = 0.

7.8 Self-Assessment Exercises
1. Find the local maxima and local minima of the function f(x) = sin4 x+cos4 x, 0 <
x < π

2
using the first derivative test.

2. Find the point of local maxima and local minima of the function f(x) = x
√
1− x, x >

0 using the first derivative test. Also, find the local maximum and local minimum val-
ues.

3. Show that sinp θ cosq θ attains a maximum, when θ = tan−1

√
p

q
.

4. Show that
log x

x
has a maximum value at x = e.

5. Find all the points of local maxima and local minima and the corresponding maxi-
mum and minimum values of the function

f(x) = −3

4
x4 − 8x3 − 45

2
x2 + 105.

6. Show that minimum value of the function f(x) = x50 − x20 in the interval [0, 1] is

−3

5

(
2

5

) 2
3

.

7. Find the point of local maxima and local minima, if any for the given function

f(x) = sin x+
1

2
cos 2x, where 0 ≤ x ≤ π

2
.

8. Find the maximum and the minimum value of the function

f(x) = 3x4–8x3 + 12x2–48x+ 25

on the closed interval [0, 3].

9. Find the global maxima and global minima of the function f(x) = sinx+sinx cosx,
in the interval [0, π].

10. Show that of all the rectangles of given area, the square has the smallest perimeter.
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11. Show that of all the rectangles inscribed in a given circle, the square has the maximum
area.

12. Show that lim
n→∞

(
1

n

)( 1
n)

= 1 and lim
n→∞

(
1

n2

) 1
n

= 1.

13. Show that < 1 + (−1)n > is not convergent.

14. By using the definition of convergence, show that

lim
n→∞

1 + 3 + 5 + ...+ 2n− 1

n2
= 1.

15. Show that the series
∞∑
n=1

√
n

n+ 1
diverges.

16. Test for the convergence of the series
∞∑
n=1

(
1

n2

) 1
n

.

7.9 Solutions to In-text Exercises
Exercise 7.1

1. The point x = 2 is neither a point of local maxima nor minima. It is a point of
inflexion.

2. f(x) attains a local maximum at x =
π

4
.

3. None in the interval (0, π)

4. x = 0 is a point of local minima and minimum value is f(x) = −4. x = −2 is a
point of local maxima and maximum value is f(x) = 0. Also, there is no point of
inflexion.

Exercise 7.2

1. x = 1 is a point of local maxima and the maximum value is −3,
x = 6 is a point of local minima and the local minimum value is −128.

2. Since f ′(x) = 0 does not have any real root, therefore f(x) does not have a maximum
or minimum.

3. (i) Local maximum at x = −2 and the local maximum value is 0,
Local minima at x = 0 and local minimum value is −4.

(ii) Local maximum at x =
3

4
and the local maximum value is

5

4
.

(iii) Local maximum at x =
π

4
and the local maximum value is

√
2.
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(iv) Local maximum at x =
π

6
and the local maximum value is

√
3 +

π

6
,

Local minima at x =
5π

6
and the local minimum value is −

√
3 +

5π

6
.

4. Profit is maximum when x =
2

3
and the maximum value of profit is 49.

5. a = 2, b = −1

2
.

Exercise 7.3

1. The maximum value of f(x) is 0 which is attained at x = π and x = 2π, and the

minimum value is −1 which is attained at x =
3π

2
.

2. Absolute maximum value = 19 at x = −3, Absolute minimum value= 3 at x = 1.

3. Absolute maximum value = 56 at x = 5, Absolute minimum = 24 at x = 1.

4. The maximum value of f(x) is 2π and the minimum value is 0.

Exercise 7.4

1.
∣∣∣∣an − 1

2

∣∣∣∣ = 1

2n
< ϵ for 2n >

1

ϵ
.

3. lim
n→∞

2n2 + 3

3n2 + 5n
=

2 + 3 lim
n→∞

(
1

n2

)
3 + 5 lim

n→∞

(
1

n

) =
2

3
.

4. lim
n→∞

an = 2.

Exercise 7.5

1. Since lim
n→∞

an ̸= 0. Hence the given series is not convergent.

2. Since the sequence of partial sums oscillates, hence the series oscillates.

3. Since lim
n→∞

an =
1√
2

. Hence the given series is not convergent.

4. Sine the sequence of partial sums is unbounded, hence not convergent. Thus the
series is not convergent.

A.C.-22.11.2022 
Appendix-111



170 LESSON - 7. EXTREMUM AND CONVERGENCE OF SERIES
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8.1 Learning Objectives

The learning objectives of this lesson are to:

• understand the various types of indeterminate forms and conditions to their forma-
tion.

• learn the L’Hôpital’s Rule.

• use L’Hôpital’s Rule to evaluate indeterminate forms arising from limits of products,
differences, quotient and exponentials.

• apply the methods of indeterminate forms for evaluating various tedious limits.

171
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8.2 Introduction

In Mathematics, the solution to a problem becomes indeterminate when the information
available is insufficient to solve the problem. The problem of evaluation of the limit of
a function becomes indeterminate if the method discussed in the previous lessons do not
work to completely evaluate the limit. in order to evaluate the limit in indeterminate form,
we usually use L’Hôpital’s Rule. In this lesson, we shall discuss the indeterminate forms
of limits with examples. Also, we will learn how to apply L’Hôpital’s Rule to evaluate
the limits of the several indeterminate forms. In most of the cases, the indeterminate form
occurs while taking the ratio of two functions, such that both of the functions approaches

zero in the limit. Such cases are called “indeterminate form
0

0
”. Similarly, the indeterminate

form can be obtained in addition, subtraction, multiplication, exponential operations also.

8.3 Indeterminate Forms of Limits

Some forms of limits are called indeterminate if the limiting behavior of individual parts
of the given expression is not able to determine the limit. Indeterminate forms occur in
various types. To understand the indeterminate form, it is important to learn about its
types. In Calculus, following types of indeterminate forms of limits occur frequently:

0

0
form,

∞
∞

form, ∞−∞ form, 0×∞ form, and forms of the type 1∞,∞0, and 00.

For example, on the basis of the information available from the previous lessons, we can

not decide on lim
x→a

f(x)

g(x)
when lim

x→a
g(x) = 0. In order to evaluate this limit (if it exists) of

f(x)

g(x)
, ( when lim

x→a
g(x) = 0), we require the additional information that lim

x→a
f(x) should

also be 0. On the contrary, let us assume that lim
x→a

f(x) ̸= 0 and lim
x→a

f(x)

g(x)
= l,(finite). Then

f(x) =
f(x)

g(x)
· g(x), g(x) ̸= 0.

=⇒ lim
x→a

f(x) = lim
x→a

f(x)

g(x)
· lim
x→a

g(x)

= l · 0 = 0,

which is a contradiction to our supposition. Hence, for lim
x→a

f(x)

g(x)
to exist provided lim

x→a
g(x) =

0, we must have lim
x→a

f(x) = 0. Thus this form of limit is an indeterminate form of limit.
We now discuss these indeterminate forms of limits, separately.
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8.4 Indeterminate Form 0
0

The limit of the type lim
x→a

f(x)

g(x)
is said to be an indeterminate form of the type

0

0
, if

lim
x→a

f(x) = 0 = lim
x→a

g(x).

It is evaluated by using the L’Hôpital’s Rule as following:

(i) lim
x→a

f(x) = lim
x→a

g(x) = 0

(ii) Derivatives f ′(x) and g′(x) exist and g′(x) ̸= 0 ∀x ∈ [a− δ, a+ δ] δ > 0.

(iii) lim
x→a

f ′(x)

g′(x)
exists.

Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remark. Some basic remarks on L’Hôpital’s Rule

1. If lim
x→a

f ′(x)

g′(x)
does not exist and again it is an indeterminate form of the type

0

0
, then

the Rule is repeated again i.e. lim
x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)
, and hence

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)
.

2. This Rule can be extended to any order, That is, if lim
x→a

f (n)(x)

g(n)(x)
is of the indeterminate

form
0

0
, then

lim
x→a

f (n)(x)

g(n)(x)
= lim

x→a

f (n+1)(x)

g(n+1)(x)
,

and hence

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= lim

x→a

f ′′(x)

g′′(x)
= . . . = lim

x→a

f (n+1)(x)

g(n+1)(x)
.

Example 8.1. Evaluate

lim
x→0

sinx

x
.

Solution. Let f(x) = sinx and g(x) = x. Then

lim
x→0

f(x) = lim
x→0

sinx = 0
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lim
x→0

g(x) = lim
x→0

x = 0.

Therefore, lim
x→0

f(x)

g(x)
= lim

x→0

sinx

x
is an indeterminate form of the type

0

0
. Therefore, by

using the L’Hôpital’s Rule, we have

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)

i.e. lim
x→0

sinx

x
= lim

x→0

cosx

1
= 1.

Example 8.2. Evaluate

lim
x→0

log(1− x2)

log(cos x)

Solution. We have f(x) = log(1− x2) and g(x) = log(cosx),

lim
x→0

f(x) = lim
x→0

log(1− x2) = log[lim
x→0

(1− x2)] = log 1 = 0.

and
lim
x→0

g(x) = lim
x→0

log(cos x) = log 1 = 0.

Hence, the given limit is of the indeterminate form
0

0
. Therefore, using the L’Hôpital’s Rule

lim
x→0

log(1− x2)

log(cosx)
= lim

x→0

d
dx

log(1− x2)
d
dx

log(cos x)

= lim
x→0

( −2x
1−x2 )

(− sinx
cosx

)

= lim
x→0

( −2x
1−x2 )

(− tanx)

= lim
x→0

2x

(1− x2) tanx

(
0

0
form

)
.

Since, the above expression is again in the form of
0

0
, hence we again apply L’ Hospital

Rule

∴ lim
x→0

2x

(1− x2)(tanx)
= lim

x→0

2

(1− x2)(secx)2 + tanx · (−2x)
=

2

1 · 1 + 0
= 2.

Thus, finally we have

lim
x→0

log(1− x2)

log(cos x)
= 2.

Example 8.3. Find the value of

lim
x→0

ex − 1

x2 + x
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Solution. Let f(x) = ex − 1 and g(x) = x2 + x.

=⇒ lim
x→0

f(x) = lim
x→0

(ex − 1) = 1− 1 = 0

and
lim
x→0

g(x) = lim
x→0

(x2 + x) = 0

Hence, the given limit is of the indeterminate form
0

0
. Therefore, by using the L’ Hospital

Rule , we get

lim
x→0

ex − 1

x2 + x
= lim

x→0

d
dx
(ex − 1)

d
dx
(x2 + x)

= lim
x→0

ex

2x+ 1

=
e0

2 · 0 + 1

= 1.

Example 8.4. Find the value of a and b for which

lim
x→0

x(1 + a cosx)− b sinx

x3

exists and is equal to 1.

Solution. Since

lim
x→0

x(1 + a cosx)− b sinx

x3

is of the indeterminate form
0

0
, therefore by using the L’ Hospital Rule , we have

lim
x→0

x(1 + a cosx)− b sinx

x3
= lim

x→0

d
dx
(x(1 + a cosx)− b sinx)

d
dx
(x3)

= lim
x→0

1 + a cosx− a sinx− b cosx

3x2

=
1 + a− b

0
. (8.1)

Since, it is given that

lim
x→0

x(1 + a cosx)− b sinx

x3

is finite and is 1. Therefore, to get the finite limit, we should have

1 + a− b = 0. (8.2)

Then the limit in 8.1 is again in
0

0
form

i.e. lim
x→0

1 + a cosx− a sinx− b cosx

3x2
is
(
0

0
form

)
.
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= lim
x→0

−a sinx− a sinx− ax cosx+ b sinx

6x

(
0

0
form again,

)
by L’Hôpital’s Rule

= lim
x→0

−2a cosx+ ax sinx− a cosx+ b cosx

6

=
−2a− a+ b

6

=
−3a+ b

6
. by the L’Hospital’s Rule.

Since, the given limit is 1

∴
−3a+ b

6
= 1

−3a+ b = 6. (8.3)

On Solving 8.2 and 8.3 for a and b, we get

a = −5

2
and b = −3

2
.

8.5 Indeterminate Form ∞
∞

A limit of the form lim
x→a

f(x)

g(x)
is said to be an indeterminate form of the type

∞
∞

, if lim
x→a

f(x) = ∞ = lim
x→a

g(x).

It is evaluated by using the L’Hôpital’s Rule as following:

If

(i) lim
x→a

f(x) = lim
x→a

g(x) = ∞.

(ii) Derivatives f ′(x) and g′(x) exist and g′(x) ̸= 0 for x ∈ (a− δ, a+ δ) δ > 0.

(iii) lim
x→a

f ′(x)

g′(x)
exists.

Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Remark. On applying the L’Hôpital’s Rule once, if the resulting limit of quotient is again
is an indeterminate form, then we apply the L’Hôpital’s Rule repeatedly until we get a finite
limit of the quotient.

Example 8.5. Compute the following limit

lim
x→∞

2x2 + 3

5x2 + x
.
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Solution. Since

lim
x→∞

2x2 + 3

5x2 + x

is an indeterminate form of type
∞
∞
. Therefore, using L’Hôpital’s Rule, we get

lim
x→∞

2x2 + 3

5x2 + x
= lim

x→∞

d
dx
(2x2 + 3)

d
dx
(5x2 + x)

= lim
x→∞

4x

10x+ 1

(∞
∞

form
)

=
4

10
=

2

5
.

Example 8.6. Evaluate

lim
x→∞

ex

x2
.

Solution. Here,
lim
x→∞

ex = ∞ = lim
x→∞

x2.

Therefore, lim
x→∞

ex

x2
is of

∞
∞

indeterminate form. Hence, by applying the L’Hôpital’s Rule,
we get

lim
x→∞

ex

x2
= lim

x→∞

ex

2x

(∞
∞

form
)
,

= lim
x→∞

ex

2
= ∞.

Example 8.7. Evaluate

lim
x→a

log(x− a)

log(ex − ea)
.

Solution. Since

lim
x→a

log(x− a)

log(ex − ea)
is of

∞
∞

indeterminate form,

therefore, using L’Hôpital’s Rule, we get

lim
x→a

log(x− a)

log(ex − ea)
= lim

x→a

1
(x−a)

ex

ex−ea

= lim
x→a

ex − ea

ex(x− a)
is of

(
0

0
form

)
= lim

x→a

ex

ex(x− a) + ex

=
ea

ea

= 1

In-text Exercise 8.1. Solve the following questions:
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1. If

lim
x→0

sin 2x+ a sinx

x3

is finite, find the value of a and the limit.

2. Evaluate
lim
x→0

tanx− x

x2 tanx
.

3. Prove that
lim
x→0

tanx

x
= 1.

4. Evaluate

lim
x→0

xex − log(1 + x)

x2
.

5. Evaluate

lim
x→1

log(x− 1) + tan πx
2

cot πx

6. Find the value of

lim
x→0

ex sinx− x− x2

x3

8.6 Indeterminate Form ∞−∞
If lim

x→a
f(x) = lim

x→a
g(x) = ∞, then lim

x→a
(f(x)−g(x)) is said to be of the indeterminate form

∞−∞.

This type of limit is evaluated by rearranging the terms and converting it into the
0

0
inde-

terminate form. We write

lim
x→a

(f(x)− g(x)) = lim
x→a

(
f(x)− g(x)

f(x)g(x)

)
f(x)g(x)

= lim
x→a

(
1

g(x)
− 1

f(x)

)
1

f(x)g(x)

which is of the form
0

0
as lim

x→a
f(x) = ∞ =⇒ lim

x→a

1

f(x)
= 0 and lim

x→a
g(x) = ∞ =⇒

lim
x→a

1

g(x)
= 0. The resulting

0

0
form is then evaluated by using L’Hôpital’s Rule.

Example 8.8. Find the value of

lim
x→0

(
1

x
− 1

sinx

)
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Solution. Since

lim
x→0

(
1

x
− 1

sinx

)
is of ∞−∞ form,

therefore, it can be rearranged as

lim
x→0

(
1

x
− 1

sinx

)
= lim

x→0

(
sinx− x

x sinx

) (
0

0
form

)
= lim

x→0

(
cosx− 1

sinx+ x cosx

) (
0

0
form

)
= lim

x→0

(
− sinx

cosx− x sinx+ cosx

)
= lim

x→0

(
− sinx

−x sinx+ 2 cosx

)
= 0

Alternately,

lim
x→0

(
1

x
− 1

sinx

)
= lim

x→0

(
sinx− x

x sinx

)
= lim

x→0

(
sinx− x

x2

)
· lim
x→0

( x

sinx

)
= lim

x→0

sinx− x

x2

[
∵ lim

x→0

sinx

x
= 1

]
= lim

x→0

cosx− 1

2x

(
0

0
form

)
= lim

x→0

− sinx

2
= 0.

8.7 Indeterminate Form 0×∞
If lim

x→a
f(x) = 0 and lim

x→a
g(x) = ±∞, then lim

x→a
(f(x) · g(x)) is said to be a limit of the

indeterminate form 0×∞.

To evaluate this type of limit it is converted to
0

0
or

∞
∞

form first and then evaluated.

We write lim
x→a

f(x) · g(x) = lim
x→a

f(x)
1

g(x)

(
0

0
form

)
or = lim

x→a

g(x)
1

f(x)

(∞
∞

form
)

which can be solved by using L’Hôpital’s Rule.
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Example 8.9. Evaluate

lim
x→∞

x2 · sin
(

1

x2

)
Solution. Since, lim

x→∞
x2 = ∞ and lim

x→∞
sin

(
1

x2

)
= 0, therefore lim

x→∞
x2 · sin

(
1

x2

)
is an

indeterminate form of type 0×∞. We write it as

lim
x→∞

x2 · sin
(

1

x2

)
= lim

x→∞

sin
(

1
x2

)(
1
x2

) which is of the form
0

0
.

= lim
x→∞

cos
(

1
x2

)
·
(−2
x3

)
−2
x3

, by using L’Hospital’s Rule

= lim
x→∞

cos

(
1

x2

)
= 1.

Example 8.10. Find the limit

lim
x→∞

(x+ 6) ·
(

1

x2 + 3

)
Solution. Since,

lim
x→∞

(x+ 6) ·
(

1

x2 + 3

)
is of ∞ · 0 form, therefore it can be written as

lim
x→∞

(x+ 6) ·
(

1

x2 + 3

)
= lim

x→∞

(x+ 6)

(x2 + 3)

(∞
∞

form
)

= lim
x→∞

1

2x
, by using L’Hospital’s Rule

= 0.

In-text Exercise 8.2. Solve the following questions:

1. Prove that limx→0+ x
m(log x)n; m.n ∈ N is zero.

2. Evaluate the value of

lim
x→0

(
1

x2
− 1

sin2 x

)
.

3. Solve

lim
x→0

(
1

x2
− cscx

x

)
cscx = cosecx.

4. Evaluate

lim
x→4

[
1

log(x− 3)
− 1

x− 4

]
.

5. Evaluate

lim
x→∞

(
x tan

1

x

)
.
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8.8 Indeterminate Forms 1∞,∞0 and 00

Consider lim
x→a

(f(x))g(x) . It is a indeterminate form of the type

(i) 1∞, if lim
x→a

f(x) = 1 and lim
x→a

g(x) = ∞.

(ii) ∞0, if lim
x→a

f(x) = ∞ and lim
x→a

g(x) = 0.

(iii) 00, if lim
x→a

f(x) = 0 and lim
x→a

g(x) = 0.

To evaluate these types of limits, we write

y = (f(x))g(x).

Taking log on both sides, we have

log y = g(x) log(f(x))

=⇒ lim
x→a

log y = lim
x→a

[g(x) log(f(x))]. (8.4)

Now, the limit on the right side of 8.4 can be reduced either in the
∞
∞

form or
0

0
form,

which can be evaluated by using the L’Hôpital’s Rule. Suppose,

lim
x→a

(g(x) log(f(x)) = l

then equation 8.4 becomes,

lim
x→a

log y = l

or log lim
x→a

y = l

lim
a→a

y = el

Thus lim
x→a

(f(x))g(x) = el where l = lim
x→a

g(x) log(f(x)).

Example 8.11. Find the value of

lim
x→π

2

(sinx)(tanx)2

Solution. Since,

lim
x→π

2

f(x) = sin
(π
2

)
= 1

lim
x→π

2

g(x) =
(
tan
(π
2

))2
= ∞
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Therefore, lim
x→π

2

(sinx)(tanx)2 is of the form (1)∞. Let y = (sinx)(tanx)2 , then taking log on

both side, we get

log y = (tanx)2 log(sinx)

=⇒ lim
x→π

2

log y = lim
x→π

2

(tanx)2 log(sinx) (∞× 0 form)

= lim
x→π

2

log(sin x)

(cotx)2

(
0

0
form

)
= lim

x→π
2

cosx
sinx

−2 cotx · (cscx)2

= lim
x→π

2

cotx

−2 cotx · (cscx)2

= lim
x→π

2

−1

2(cscx)2
= −1

2

lim
x→π

2

log y = log( lim
x→π

2

y) = −1

2
.

Hence,

lim
x→π

2

y = e
−1
2 =

1√
e
.

i.e. lim
x→π

2

(sinx)(tanx)2 =
1√
e
.

Example 8.12. Evaluate the limit
lim
x→0

xx.

Solution. Since the given limit is of the indeterminate form 00. Let

y = xx

=⇒ log y = x log x

=⇒ lim
x→0

log y = lim
x→0

x log x (0×∞ form)

= lim
x→0

log x
1
x

(∞
∞

form
)

= lim
x→0

1
x
−1
x2

, by using the L’Hospital’s Rule

− lim
x→0

x = 0.

Thus

log lim
x→0

y = 0

=⇒ lim
x→0

y = e0

=⇒ lim
x→0

xx = lim
x→0

y = e0 = 1.
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Example 8.13. Evaluate the following limit

lim
x→0

(
1

x

)1−cosx

Solution. Since, the given limit is of the form (∞)0, therefore let

y =

(
1

x

)1−cosx

=⇒ log y = (1− cosx) log

(
1

x

)
∴ lim

x→0
log y = lim

x→0
(1− cosx) log

(
1

x

)
= lim

x→0
2
(
sin

x

2

)2
(log 1− log x)

= lim
x→0

2
(
sin

x

2

)2
(− log x)

= lim
x→0

2

(
sin x

2
x
2

)2

· x
2

4
· (− log x)

= lim
x→0

(− log x · x2)
2

· lim
x→0

(
sin
(
x
2

)
x
2

)2

= lim
x→0

− log x
2
x2

[
∵ lim

x→0

sin x
2

x
2

= 1

] (∞
∞

form
)

= lim
x→0

−1
x
−4
x3

, by using the L’Hospital’s Rule

= lim
x→0

(
x2

4

)
= 0

lim
x→0

log y = log lim
x→0

y = 0

=⇒ lim
x→0

y = e0 = 1.

Thus

lim
x→0

(
1

x

)1−cosx

= lim
x→0

y = 1.

Example 8.14. Evaluate

lim
x→0

(
sinx

x

)( 1
x2
)

Solution. We have

lim
x→0

f(x) = lim
x→0

(
sinx

x

)
= 1

lim
x→0

g(x) = lim
x→0

(
1

x2

)
= ∞.
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Therefore, lim
x→0

(
sinx

x

)( 1
x2
)

is of the indeterminate form (1)∞. Let

y =

(
sinx

x

)( 1
x2
)

=⇒ log y =

(
1

x2

)
log

(
sinx

x

)
lim
x→0

log y = lim
x→0

(
1

x2

)
log

(
sinx

x

)
(∞× 0 form)

lim
x→0

log y = lim
x→0

log
(
sinx
x

)
x2

(
0

0
form

)

= lim
x→0

x cos x−sin x

x2
sin x
x

2x
, by using the L’Hospital’s Rule.

= lim
x→0

x cosx− sinx

2x2 sinx

= lim
x→0

x cosx− sinx

2x3
· lim
x→0

( x

sinx

)
= lim

x→0

(
−x sinx+ cosx− cosx

6x2

) [
∵ lim

x→0

(
sinx

x
= 1

)]
.

= lim
x→0

− sinx

6x

= lim
x→0

−1

6
· lim
x→0

(
sinx

x

)
=

−1

6

lim
x→0

log y = log lim
x→0

y =
−1

6

=⇒ lim
x→0

y = e−
1
6 .

Hence,

lim
x→0

log

(
sinx

x

)( 1
x2
)
= lim

x→0
y = e

−1
6 .

In-text Exercise 8.3. Evaluate the following limits:

1. lim
x→π

4

(tanx)tan 2x .

2. lim
x→0

(cscx)
1

log x .

3. lim
x→∞

(
1 +

k

x

)x

.

A.C.-22.11.2022 
Appendix-111



8.9. SUMMARY 185

4. lim
x→0

(
sinx

x

) 1
x

.

5. lim
x→a

(
3− 2x2

a2

)tan(πx
2a

)

.

8.9 Summary
We have discussed the following points in this lesson:

• Indeterminate forms of limits are of the following forms:

0

0
,
∞
∞
, 0×∞,∞−∞, 00, 1∞, and ∞0

• Indeterminate forms
0

0
and

∞
∞

can be easily evaluated by using L’ Hospital Rule
which state that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

• The limiting value of an indeterminate form is called the true value of the limit.

• Indeterminate forms 0 × ∞,∞ − ∞, 00, 1∞, and ∞0 can be easily evaluated by

using
0

0
or

∞
∞

form.

8.10 Self-Assessment Exercises
1. Evaluate the determinate form:

lim
x→0

x cosx− log(1 + x)

x2
.

2. Evaluate the following limits

(a)

lim
x→∞

(π
2
− tan−1 x

) 1
x
.

(b)

lim
x→0

(
1

x
− log(1 + x)

x2

)
.

(c)

lim
x→0

1− (secx)2

3x2
.

(d)

lim
x→0

ex sinx− x− x2

x2 + x log(1− x)
.
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(e)

lim
x→0

(
sinhx

x

) 1
x

.

3. Show that

lim
x→0

ex + log
(
1−x
e

)
tanx− x

= −1

2
.

4. Find the value of p, q and r, if

lim
y→0

rey − q cos y + pe−y

y tan y
= 3.

5. Find the values of a, b, c, so that

lim
x→0

aex − b cosx+ ce−x

x sinx
= 2.

6. Show that

lim
x→0+

(1 + x)
1
x − e+ ex

2

x2
=

11e

24
.

7. Find the value of

lim
x→∞

2x4 + 4x3 − 100

4x4 + 9x2 + 2x+ 100
.

8. Evaluate

lim
x→0+

logx sinx Hint.
[
logx sinx =

log sinx

log x

]
.

Solutions to In-text Exercises
Exercise 8.1

1. Considering a ∈ R to be finite, the given limit

lim
x→0

sin 2x+ a sinx

x3

is of the form
0

0
, therefore we evaluate it by applying L’Hôpital’s Rule to obtain

a = −2 and the value of limit as −1.

2. The value of the limit is
1

3
.

4. The value of the limit is
3

2
.

5. The value of the limit is
1

3
.
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6. The value of the limit is
1

3
.

Exercise 8.2

1. lim
x→0+

xm(log x)n; m.n ∈ N is of the form (0 × ∞). Therefore, we can convert it

either in the form of
0

0
or

∞
∞

and then use L’Hôpital’s Rule to evaluate the limit. The
value of the limit is 0.

2. lim
x→0

[
1

x2
− 1

sin2 x

]
is of the form ∞−∞. Therefore, we can convert it either in the

form of
0

0
or

∞
∞

and then use L’Hôpital’s Rule to evaluate the limit. The value of the

limit is −1

3
.

3. lim
x→0

[
1

x2
− cscx

x

]
is of the form ∞ −∞. Therefore, we can convert it either in the

form of
0

0
or

∞
∞

and then use L’Hôpital’s Rule to evaluate the limit. The value of the

limit is −1

6
.

4. lim
x→4

[
1

log(x− 3)
− 1

x− 4

]
is of the form ∞−∞. Therefore, we can convert it either

in the form of
0

0
or

∞
∞

and then use L’Hôpital’s Rule to evaluate the limit. The value

of the limit is
1

2
.

5. The value of limit is 1.

Exercise 8.3

1. lim
x→π

4

(tanx)tan 2x is of the form (1)∞ which can be converted either in
(
0
0

)
form or(∞

∞

)
form. Then use L’hospital’s Rule to evaluate the limit. The value of limit is −1.

2. lim
x→0

(cscx)
1

log x is of the form (∞)0. Therefore, by taking log on both side, we get

lim
x→0

log y = lim
x→0

1

log x
log (cscx) (0×∞ form)

= lim
x→0

(
log cscx

log x

) (∞
∞

form
)

= −1

Thus, lim
x→0

(cscx)
1

log x = e−1 =
1

e
.
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3. lim
x→∞

(
1 +

k

x

)x

is of the form (1)∞. Therefore, by taking log on both side, we get

lim
x→∞

log y = lim
x→∞

x log

(
1 +

k

x

)
(∞× 0 form)

= lim
x→∞

log

(
1 +

k

x

)
/
1

x

(
0

0
form

)
= k

Thus, lim
x→∞

(
1 +

k

x

)x

= ek.

4. lim
x→0

(
sinx

x

) 1
x

is of the form (1)∞ and the value of limit is e.

5. lim
x→a

(
3− 2x2

a2

)tan(πx
2a

)

is of the form (1)∞ which can be converted either in
0

0
form

or
∞
∞

form. Then use L’hospital’s Rule to evaluate the limit. The value of limit is π2.

8.11 Suggested Readings
1. Narayan, Shanti (Revised by Mittal, P. K.). Differential Calculus. S. Chand, Delhi,

2019.

2. Prasad, Gorakh (2016). Differential Calculus (19th ed.) Pothishala Pvt. Ltd. Alla-
habad.

3. Thomas Jr., George B., Weir, Maurice D.,Hass, Joel (2014). Thomas Calculus (13th
ed.). Pearson Education, Delhi. Indian Reprint 2017.
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9.1 Learning Objectives
The learning objectives of this lesson are to:

• understand the notion of asymptotic behaviour of curves

• learn the methods to find the different types of asymptotes

• understand the concept of concavity of a function

• learn to find a point of inflexion.

189

A.C.-22.11.2022 
Appendix-111



190 LESSON - 9. ASYMPTOTES, CONCAVITY AND POINT OF INFLEXION

9.2 Introduction
Informally, an asymptote of a curve is a straight line which touches the curve at infinity. An
asymptote indicates the behaviour of a curve at the points far off from the origin. A curve
that lies wholly in a bounded region has no asymptote. For example, the circle x2+y2 = a2

has no asymptote. In this lesson, we will learn about different kinds of asymptotes and the
procedures to find them. We will also discuss the important concepts of the concavity and
the points of inflexion of a curve. All these concepts are useful in sketching the graphs of
various functions. We begin with the formal definition of an asymptote of a curve.

9.3 Asymptote
Definition 9.1. (Asymptote): A straight line is called an asymptote of a given curve y =
f(x), if the perpendicular distance between the line and the point A(x, y) on the curve
approach to 0 as x or y or both approach to infinity.

There are three kinds of asymptotes, as given below:

• Asymptotes parallel to x− axis or horizontal asymptotes.

• Asymptotes parallel to y− axis or vertical asymptotes.

• Oblique asymptotes.

In the following sub-sections, we will discuss these kinds of asymptotes one by one.

9.3.1 Horizontal Asymptotes
By the definition of an asymptote, a horizontal line y = c is a horizontal asymptote of the
curve y = f(x), if the perpendicular distance of the point on the curve from the line y = c
tends to 0 as x → ∞(or −∞). That is, if limx→∞ y = c or limx→−∞ y = c, then y = c is
a horizontal asymptote of the curve y = f(x).

Example 9.1. Find the asymptote parallel to x− axis of the curve

y =
3x2 + 8x− 5

5x2 + 2

Solution. We have

lim
x→∞

y = lim
x→∞

f(x)

= lim
x→∞

3x2 + 8x− 5

5x2 + 2

= lim
x→∞

3 + 8/x− 5/x2

5 + 2/x2

=
3

5
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Therefore the line y = 3
5

or 5y−3 = 0 is a horizontal asymptote to the given curve y = f(x)
on the right.
Similarly, we can show that

lim
x→−∞

y = lim
x→−∞

f(x)

= lim
x→−∞

3x2 + 8x− 5

5x2 + 2

= lim
x→−∞

3 + 8/x− 5/x2

5 + 2/x2

=
3

5

Therefore, the line y = 3/5 is a horizontal asymptote to y = f(x) on the left. That is, the
line y = 5/3 to a horizontal asymptote or an asymptote parallel to x− axis.

9.3.2 Vertical Asymptotes
A vertical line x = d is said to be a vertical asymptote( asymptote parallel to y− axis) of
the curve y = f(x), if the perpendicular distance of the point on the curve from the line
x = d tends to 0 as y → ∞(or −∞).

Example 9.2. Find the asymptote parallel to x− axis of the curve

y =
x2 + 8x− 3

x2 − 5x− 6

Solution. Consider the denominator

x2 − 5x− 6 = (x− 6)(x+ 1),

which means that two zeros of the denominator are x = 6 and x = −1.

lim
x→6

x2 + 8x− 3

x2 − 5x− 6
= ∞

lim
x→−1

x2 + 8x− 3

x2 − 5x− 6
= ∞

Therefore, the line x = 6 and x = −1 are vertical asymptote to y = f(x).

Example 9.3. Find the asymptote parallel to x− axis of the curve

x2 + y2 − a2(x2 + y2) = 0

Solution. The given equation can be written as

x2y2 − a2x2 − a2y2 = 0

⇒ (y2 − a2)x2 − a2y2 = 0

⇒ (x2 − a2)y2 − a2x2 = 0

Clearly, The Asymptotes parallel to x-axis are given by y2 − a2 = 0⇒ y = ±a.
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We give the following rule for determining the Asymptotes parallel to the coordinate
axes: RULE 1. The Asymptotes parallel to x-axis can be easily obtained by equating to
zero the coefficient of the highest degree term in x. However if the coefficient of the highest
degree term in x is constant or has imaginary(no real) factors then curve has no Asymptote
parallel to x-axis.

RULE 2. The Asymptotes parallel to y-axis can be easily obtained by equating to zero
the coefficient of the highest degree term in y. However if the coefficient of the highest
degree term in y is constant or has imaginary(no real) factors then curve has no Asymptote
parallel to x-axis.

9.3.3 Oblique Asymptote
The Asymptote which are not parallel to any of the coordinate Axes are called as Oblique
Asymptote. An Asymptote of a given curve is a straight line which touches the given curve
at infinity

Figure 9.1: Asymptote to a Curve

In other words, a line y = mx + c is called an asymptote of a curve y = f(x) if the
perpendicular distance PM of any point P(x,y) on the curve from the line tends to zero as P
tends to infinity along the curve.Asymptotes plays a important role in sketching graphs of
the function. It gives information about the behaviour of the curve at infinity. In this chapter
we will learn about different types of Asymptotes and their finding procedures. In partic-
ular we will study about three types of Asymptotes. Firstly Asymptotes parallel to x-axis
and y-axis and secondly we will work on finding oblique Asymptotes to the given curve.
Concavity and points of inflexion of the curves are also being explained and discussed in
this chapter with examples to understand the curves more precisely.

Note:
1. The total number of Asymptotes ,real or imaginary of an algebraic curve of nth degree,
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can never exceed n.
2. Non-existence of an Asymptote. If for a curve y = f(x), y/x tend to ∞ as x and y both
tends to infinity, then the curve y − x3 has no asymptote.

Definition 9.2. A function f(x,y) in x and y is called as homogenous function , if the degree
of each term in the expression are equal for e.g. the function

f(x, y) = 3x2 + 2xy + y2

is a homogenous function since the sum of the powers of x and y in each term is the same.

Working Rule For Finding Oblique Asymptote
Let the equation of the given curve be written as

ϕn(x, y) + ϕn−1(x, y) + .......+ ϕ1(x, y) + c = 0 (1)

where ϕr(x, y) is homogenous expression in x and y of degree r.

STEP 1. Put x = 1 and y = m in (1) to get the polynomials ϕn(m), ϕn−1(m),ϕn−2(m),
etc.

STEP 2. The slopes of the Asymptotes are given by ϕn(m)=0.

STEP 3. If m is non repeated root of ϕn(m) = 0 then the corresponding value of c is
given by

c =
−ϕn−1(m)

ϕ′
n(m)

STEP 4. If m is repeated root of ϕn(m) = 0 then the two values of ‘c’ are given by

c2

2
ϕ′′
n(m) + cϕ′

n−1(m) + ϕn−2(m) = 0

STEP 5. Similarly in the case when the three roots of equation ϕn(m) = 0 are equal
.We get three parallel Asymptotes and the corresponding three values of c are obtained
from the equation.

c3

3!
ϕ′′
n(m) +

c2

2!
ϕ′′
n−1(m) +

c

1!
ϕn−2(m) + ϕn−3(m) = 0

STEP 6. y = mx+ c is an Asymptote of the curve.

Example 9.4. Find the Asymptotes of the curve

y3 − x2y + 2y2 + 4y + x = 0
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Solution. The given equation of the curve is of degree 3. We have
ϕ3(x, y) = y3 − x2y
ϕ2(x, y) = 2y2

ϕ1(x, y) = 4y + x

STEP 1. Putting x = 1,y = m in the above polynomials ,we have
ϕ3(m) = m3 −m = m(m2 − 1)
ϕ2(m) = 2m2

ϕ1(m) = 4m+ 1

STEP 2. Slopes m for the required Asymptotes are given by
ϕ3(m) = 0
⇒m(m2 − 1) = 0
⇒m(m− 1)(m+ 1) = 0
⇒m = 0,m = 1,m = −1
which are all distinct and the corresponding c is given by

STEP 3.

c =
−ϕ2(m)

ϕ′
3(m)

or

c =
−2m2

3m2 − 1

Now for m=0 , c=0

m=1, c = −2
2

= −1

m=-1,c = −2
2

= −1

Hence the three Asymptotes of the given curve are
y = 0 (for m = 0, c = 0)
y = x− 1 (for m = 1, c = −1)
y = −x− 1 (for m = −1, c = −1)

OBSERVATION

1. In the above question the Asymptote y=0 parallel to x-axis can also be directly ob-
tained by equating to zero the coefficient of the the highest degree term of x which is
y=0.

2. Further since the coefficient of the highest degree term of y is constant there is no
Asymptote parallel to y axis.

Example 9.5. Find the Asymptotes of the curve

xy2 − 3x2 − 2xy − x2y + y2
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Solution. We have

ϕ3(x, y) = xy2 − x2y

ϕ2(x, y) = −3x2 − 2xy + y2

ϕ1(x, y) = 0

STEP 1. Putting x=1 , y=m in the given equation we get,

ϕ3(m) = m2 −m

ϕ2(m) = −3− 2m+m2

STEP 2. The slopes of the Asymptotes are given by

ϕ3(m) = 0 i.e.m2 −m = 0

or m(m-1)=0

or m=0,m=1

which are all distinct and thus the corresponding ‘c’ is given by

STEP 3. c = −ϕ2(m)
ϕ′
3(m)

= −(m2−2m−3)
2m−1

Now for m=0, c=-3

y = mx+ c is given by

y=-3 or y+3=0 is an Asymptote.

For m = 1, c = −(1−2−3)
1

= 4

Thus y = mx+ c or y = x+ 4 is an Asymptote.

Hence, all the Asymptotes of the given curve are x+1=0, y+3=0 and y=x+4.

OBSERVATION
Further, the given equation can be written as

y2(x+ 1) + x2(−3− y)− 2xy

1. The Asymptote parallel to x-axis is given by equating to zero the coefficient of the
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highest degree trem of x i.e. -3-y=0

or y+3=0.

2. The Asymptote parallel to y-axis is given by equating to zero the coefficient of the
highest degree term of y i.e. x+1=0.

Example 9.6. Find the Asymptotes if any of the curve
4x3 − 3xy2 − y3 + 2x2 − xy − y2 − 1 = 0

Solution. We have

ϕ3(x, y) = 4x3 − 3xy2 − y3

ϕ2(x, y) = 2x2 − xy − y2

STEP 1. Putting x=1 , y=m in the above polynomials we get,

ϕ3(m) = 4− 3m2 −m3

ϕ2(m) = 2−m−m2

STEP 2. The slopes of the Asymptotes are given by,

ϕ3(m) = 0

m3 + 3m2 − 4 = 0

(m− 1)(m+ 2)2 = 0

or m=1,-2,-2.

STEP 3. For m=1, corresponding value of ‘c’ is calculated by,

c = −ϕ2(m)
ϕ′
3(m)

c = −(−m2−m+2)
−3m2−6m

or c = m2+m−2
−3m(m+2)

For m=1, c = 2−2
−3(3)

= 0

thus, y=mx+c or y=x is an Asymptote.

STEP 4. Now for repeated roots m=-2,-2

‘c’ is calculated by
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c2

2!
ϕ′′
3(m) + c

1!
ϕ′
2(m)) + ϕ1(m) = 0

or c2

2
(−6− 6m) + c(−2m− 1) = 0

or c2(−3− 3m) + c(−2m− 1) = 0

or 3c2(m+ 1) + c(2m+ 1) = 0

puting m=-2 in the above quadratic equation in ‘c’ we get,

3c2(−1) + c(−3) = 0

or 3c2 + 3c = 0

or 3c(c+1)=0

⇒ c = 0, c = −1

Thus the required Asymptotes for m=-2, c=0 ,is y=-2x,
and for m=-2 ,c=-1 is y=-2x-1.

Hence all the three Asymptotes are

y=x, y=-2x, y=-2x-1.

Example 9.7. An Asymptotes touches the curve in atleast (i) one point (ii) two points (iii)
three points (iv) one of these.

Solution. Since the Asymptote touches the curve at infinity hence the correct answer is
(iv).

Example 9.8. Find the Asymptotes for the curve, if any?

x4 + y4 − 2x2y2 − 4x2 + x = 0

Solution. We have
ϕ4(x, y) = x4 + y4 − 2x2y2

ϕ3(x, y) = 0
ϕ2(x, y) = −4x2

ϕ1(x, y) = x

STEP 1. putting x=1,y=m in the above polynomials,we get
ϕ4(m) = 1 +m4 − 2m2

ϕ3(m) = 0
ϕ2(m) = −4
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ϕ1(m) = 1

STEP 2.The slopes for the required Asymptotes are given by ϕ4(m) = 0
or m4 − 2m2 + 1 = 0
⇒ (m2 − 1)2 = 0
= (m2 − 1)(m2 − 1) = 0
= m = +1,−1,+1,−1

STEP 3. For repeated root m=-1, ‘c’ is given by
c2

2!
ϕ′′
4(m) + cϕ′

3(m) + ϕ2(m) = 0

or c2

2
(12m2 − 4) + c(0)− 4 = 0

or c2(6m2 − 2)− 4 = 0
or c2(3m2 − 1)− 2 = 0.
for m=-1, ‘c’ is ginen by
c2(3− 1)− 2 = 0
⇒ 2c2 − 2 = 0
⇒ c2 − 1 = 0
⇒ c = ±1
y=-x+1 and y=-x-1.

STEP 4. For m=1, we have
c2(3− 1)− 2 = 0
or 2c2 − 2 = 0
or c2 = 1
⇒ c = ±1
y=x+1 and y=x-1.
Hence y=x+1, y=x-1, y=-x+1, y=-x-1 are the four Asymptotes of the given curve.

NOTE. In the above question in the equation x4 + y4 − 2x2y2 − 4x2 + x = 0
There are no Asymptotes parallel to x-axis and y-axis. Since the coefficients of highest

degree terms of x and y are constants.

Example 9.9. Find the Asymptotes of the curve given by the equation.

y4 − 2xy3 + 2x3y − x4 − 3x3 + 3x2y + 3xy2 − 3y3 − 2x2 + 2y2 − 1 = 0

Solution. The equation of the curve is of degree 4. hence it cannot have more than four
Asymptotes. From the equation of the curve, we have

ϕ4(x, y) = y4 − 2xy3 + 2x3y − x4

ϕ3(x, y) = −3x3 + 3x2y + 3xy2 − 3y3

ϕ2(x, y) = −2x2 + 2y2

ϕ1(x, y) = 0

STEP 1. Putting x=1, y=m in the above polynomials. We get
ϕ4(m) = m4 − 2m3 + 2m− 1
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= (m− 1)(m3 −m2 −m+ 1)
= (m− 1)2(m2 − 1)
= (m− 1)3(m+ 1)
ϕ3(m) = −3m3 + 3m2 + 3m− 3
ϕ2(m) = 2(m2 − 1)
ϕ1(m) = 0

STEP 2. For the slopes of the Asymptotes y=mx+c, we have the roots of the equation
ϕ4(m) = 0

⇒ (m− 1)3(m+ 1) = 0
⇒ m = 1, 1, 1and− 1
Thus, of the four Asymptotes, three have equal slopes or are parallel.

STEP 3. For m=-1, ‘c’ is given by
c = −ϕ3(m)

ϕ′
4(m)

= −3(−m3+m2+m−1)
3(m−1)2(m+1)+(m−1)3·1

= −3(−(−1)3)+(−1)2−1−1
0+(−2)3

= 0.
Therefore for m=-1, c=0 the Asymptote y=mx+c is given by y=-x.

STEP 4. Now for repeated roots m= 1,1,1 the corresponding value of ‘c’ is calculated
by c3

3!
ϕ′′′
4 (m) + c2

2!
ϕ′′
3(m) + cϕ′

2(m) + ϕ1(m) = 0

or c3

6
(24m− 12) + c2

2
(−18m+ 6) + c · 4m = 0

or c[(4m− 2)c2 + (−9m+ 3)c+ 4m] = 0
putting m=1, c=0 and 2c2 − 6c+ 4 = 0
or (c-1)(c-2)=0
thus the three values of c for m=1 are c=0,1,2.
Therefore,the four Asymptotes are
y=-x (m=-1,c=0)
y=x (m=1,c=0)
y=x+1 (m=1, c=1)
y=x+2 (m=1, c=2)

In-text Exercise 9.1. Find the asymptotes of the following curves :

1) x3 + 3xy2 + y2 + 2x+ y = 0

2) a2

x2 +
b2

y2
= 1

3) y2(a2 − x2) = x4

4) x2y3 + x3y2 = x3 + y3

5) xy3 +3 y = a4

6) (x3 + a3)y = bx3
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7) Prove that the four asymptotes of the curve x2y2 − x2y − xy2 + x+ y + 1 = 0 form
a square.

9.4 Concavity of a Curve

Figure 9.2: Concave Up

Definition 9.3. (Concave upwards at a point) A portion of the curve on both sides of a
point lies above any tangent line drawn to it on the point, then the curve is said concave
upwards at P .

Definition 9.4. Concave downwards at a point) A portion of the curve on both sides of
a point lies below any tangent line drawn to it on the point, then the curve is said concave
downwards at P .

Definition 9.5. (Concave upwards on an Interval) A curve y = f(x) is said to be concave
upwards in an interval, if it is concave upwards at every point of that interval. That is, if the
curve bends upwards on that interval. In otherwords, the portion of the curve corresponding
to the interval, lies above the tangent line at any point of the curve corresponding to the
interval as shown in figure 9.2.

Definition 9.6. (Concave downwards on an Interval) A curve y = f(x) is said to be
concave downwards in an interval, if it is concave downwards at every point of that interval.
That is, if the curve bends downwards on that interval. In otherwords, the portion of the
curve corresponding to the interval, lies below the tangent line at any point of the curve
corresponding to the interval as shown in figure 9.3.

Figure 9.3: Concave Down
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9.4.1 Criteria for Concavity
Let y = f(x) be a function defined on an open interval I , such that f ′′(x) exists for x ∈
I . We know that the sign of the first order derivative f ′(x) indicates whether the curve
y = f(x) is increasing or decreasing on I . For checking the concavity (or convexity) of
y = f(x) on I using the second order derivative f ′′(x) for x ∈ I . We have the following
criteria:

(i) The curve y = f(x) is concave upwards on I if f ′′(x) > 0 ∀x ∈ I

(i) The curve y = f(x) is concave downwards on I if f ′′(x) < 0 ∀x ∈ I

Example 9.10. For f(x) = x3 − 3x2 + 1, find the intervals on which f(x) is

(i) concave upwards

(i) concave upwards

Solution. We have,

f(x) = x3 − 3x2 + 1 ⇒ f ′(x) = 3x2 − 6x⇒ f ′′(x) = 6(x− 1)

For x < 1, f ′′(x) < 0.
Therefore, f(x) is concave downwards in (−∞, 1).
For x > 1, f ′′(x) > 0.
Therefore, f(x) is concave inwards in (1,∞).

Example 9.11. let f(x) = x3, then find the interval where it is concave up and concave
down.

Solution. f(x) = x3

f ′(x) = 3x2

f ′′(x) = 6x
f ′′(x) = 0
=⇒ 6x = 0
=⇒ x = 0

Case I : x ∈ (−∞, 0)

f ′′(x) = 6x < 0

=⇒ f is concave down on the interval (−∞, 0)

Case II : x ∈ (0,∞)

f ′′(x) = 6x > 0

=⇒ f is concave up on the interval (0,∞)
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9.5 Point of Inflexion
Definition 9.7. Point of Inflexion of a curve A point on the curve y = f(x) at which the
curve changes its concavity from upwards to downwards or from downwards to upwards is
called as a point of Inflexion.

For example, f(x) = x1/3 has (0, 0) as an inflexion point which is depicted in Fig. 10.4.

Figure 9.4: Inflexion Point

Note. • A curve changes its shape at a point of inflexion.

• A curve crosses the tangent line at a point of inflexion.

9.5.1 Criteria for Point of Inflexion
If P (a, f(a)) is a point of inflexion of the curve y = f(x), then f ′′(a) = 0 or f ′′(a) does
not exist.

Example 9.12. Discuss the concavity of f(x) = x3 and find its point of inflexion.

Solution. We have f(x) = x3, x ∈ R.
then f ′(x) = 3x2 and f ′′(x) = 6x. Now, f ′′(x) = 6x imply that, f ′′(x) < 0 for x ∈
(−∞, 0) and f ′′(x) > 0 for x ∈ (0,∞). Therefore, the curve f(x) = x3 is concave
downwards on (−∞, 0) and concave upwards on (0,∞) and it has a point of inflexion at
x = 0, as f ′′(x) changes its sign as x passes through x− 0.

From the above mentioned criteria, we note that if f ′′(a) = 0, then the curve y = f(x)
may not have point of inflexion at x = a.
For example, Consider the function f(x) = x4. Then

f ′′(x) = 12x2 ⇒ f ′′(0) = 0

But x = 0 is not a point of inflexion for f(x) = x.
Similarly, if f ′′(x) does not exist at a point x = a, the the curve y = f(x) may have a point
of inflexion at x = a. For example, the function f(x) = x1/3 has a point of inflexion at
x = 0, but f ′′(0) does not exist.
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Example 9.13. Find the intervals on which f(x) = x3 − 3x2 + 1 is (i) Concave up (ii)
Concave down (iii) Locate all the points of inflexion.

Solution. As f(x) = x3 − 3x2 + 1, then f ′(x) = 3x2 − 6x = 3x(x − 2) and f ′′(x) =
6x− 6 = 6(x− 1)
For x < 1, f ′′(x) = 6(x− 1) is negative thus f is concave downwards in (−∞, 1), and
For x > 1, f ′′(x) = 6(x − 1) is positive thus f is concave upwards in (1,∞). We can
evealuate points of inflexion by f ′′(x) = 0

⇒ 6(x− 1) = 0 ⇒ x = 1

Clearly, x = 1 is the inflexion point since f(x) changes from concave down to concave up
at x=1.

9.6 Summary
Following points have been discussed in this lesson

• An asymptote of a curve y = f(x) is a straight line if the perpendicular distance
between the line and the point A(x, y) on the curve approach to 0 as x or y or both
approach to infinity.

• There are three kinds of asymptotes of a curve y = f(x), namely,

– Horizontal Asymptote

– Vertical Asymptote

– Oblique Asymptote

• Concavity of y = f(x) at a point (concave upwards and concave downwards)

• Concavity of y = f(x) in an interval (concave upwards and concave downwards)

• Criteria for checking the concavity of a curve y = f(x).

• Point of inflection and criteria for obtaining point of inflection for given curve.

9.7 Self Assessment Exercise
1. Find the asymptotes for the following curves:

(a) y3 − 6xy2 + 11x2y − 6x3 + x+ y = 0

(b) (x+ y)2(x+ 2y + 2) = x+ 9y − 2

(c) a2

x2 + b2

y2
= 1

(d) y3 − x2y − 2xy2 + 2x3 − 7xy + 3y2 + 2x2 + 2x+ 2y + 1 = 0

(e) x3 + 3xy2 − 4y3 − x+ y + 3 = 0
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(f) x3 − 2x2y + xy2 − x3 − xy + 2 = 0

(g) x2(x− y)2 + a2(x2 − y2) = a2xy

(h) y2(x− 2a) = x3 − a3

(i) x2y + xy2 + xy + y2 + 3x = 0

(j) (y − a)2(x2 − a2) = x4 + a4

(k) x3 + y3 = 3axy.

2. Discuss the concavity of f(x) = ex and log(x).

3. Find the intervals in which f(x) = x5 is concave up,concave down. Also find the
points of inflexion.
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10.1 Learning Objectives
The importance of this chapter lies in the fact that it enables the students to learn the fol-
lowing:

• How to draw the various algebraic curves.

• Multiple points of the curve such as Node, Cusp, Isolated points.

• Symmetry of the curve.

• Asymptotes to a curve by inspection.

• Tangents at the origin to a curve.

• Region of existence of curve.

• Region of absence of curve.

• Point of intersection with coordinate axes.
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After studying this chapter students will be able to draw rough sketch of various alge-
braic curves and will learn about their properties.which helps them in solving many math-
ematical problems.

10.2 Introduction
Curve tracing is a method of drawing a rough sketch or shape of a curve by the study of
some of its important characteristics such as symmetry, origin, point of intersection with
coordinate axes, asymptotes, tangents, multiple points, region of absence of curves, region
of existence of curves. Knowledge of curve tracing is useful in application of integration for
computing areas, lengths, volume of solids of revolution and surface of solids of revolution
in other chapters. It is very important and helpful to know the shape of a curve represented
by the given equation. Curve tracing helps us to draw the rough sketch of the curve which
further helps us in solving various mathematical problems. In this chapter, we learn to draw
various algebraic curves using some standard rules and their properties.

10.3 Tangent and Normal to a Curve
If θ be the angle which the tangent at any point P(a,b) on the curve y=f(x) makes with
x-axis, then tanθ = dy

dx
= f ′(x) and is called as the slpoe ’m’ of the tangent line to the curve

at the point P(a,b).It now follows that

Definition 10.1. The equation of a tangent to a given curve at point P(a,b) is given by:-

y − b =
dy

dx
(x− a)

where, dy
dx

is the slope of the tangent.

Definition 10.2. The normal to the curve y=f(x) at any poit P(a,b) is the straight line pass-
ing through the point P(a,b) and is perpendicular to the tangent to the curve at that point.
Slope of the Normal is given by −dx

dy
.

Where slope of the tangent was dy
dx

.

Hence, the equation of the Normal to the curve y=f(x) at P(a,b) is given by

y − b = −dx
dy

(x− a)

Example 10.1. Find the equation for the tangent and normal to the parabola y = x2 at the
point P(1,1).

Solution. Equation of the parabola is y = x2.
which gives dy

dx
= 2x

now at the point (1,1) we have
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dy
dx

= 2
Thus the equation of the tangent to the given curve at (1,1) is given by
y − 1 = 2(x− 2)

or y − 1 = 2x− 2

or y = 2x− 1

Equation of normal at (1,1)
y − 1 = −1

2
(x− 1)

or 2y − 2 = −x+ 1

or x+ 2y = 3

Example 10.2. Find the equation of tangent and normal for the curve y2 = 4x+ 5.

Solution. Given curve y2 = 4x+ 5

Differentiating w.r.t. ’x’, we get

2y dy
dx

= 4

⇒ dy
dx

= 4
2y

= 2
y

⇒ dy
dx

= 2 at (-1,1)

Now, equation of the tangent line at (-1,1) having slope 2 is given as

y − 1 = 2(x− 1)

or y − 1 = 2x+ 2

or y = 2x+ 3

Also, equation of normal at (-1,1) is given by

y − 1 = −dx
dy
(x+ 1)

⇒ (y − 1) = −1
2
(x+ 1)

or 2y − 2 = −x− 1

or x+ 2y = 1

A.C.-22.11.2022 
Appendix-111



208 LESSON - 10. CURVE TRACING

10.4 Tracing of Cartesian Curves
I SYMMETRY

(a) A curve is symmetrical about x-axis if all the powers of y in the equation of the
given curve are even. or if f(x,−y) = f(x, y)

Example y2 = 4ax

(b) A curve is symmerical about y-axis if all the powers of x in the equation of the
given curve are even. or if f(−x, y) = f(x, y)

Example x2 = 4ay

(c) A curve is symmetrical about the line y = x if the equation of the given curve
remains unchanged on interchanging x and y. i.e. f(x,y)=f(y,x)
Example x3 + y3 = 3axy

II THE ORIGIN
If the equation of the curve is satisfied on putting x=0 and y=0 then we say that origin
lies on the curve or in other words if there is no constant term in the equation , we
say that curve passes through origin.

Short-cut Rule for Finding Tangent at the Origin
If the curve passes through the origin we can find the equation of the tangent to the
curve at the origin by equating to zero the lowest degree term in the equation.

Example 10.3. Find the tangent at the origin to the curve y2 = 4ax

Solution. In the above equation,

the tangent is given by putting lowest degree term equal to zero i.e.4ax = 0 thus
x = 0 is the tangent to the curve at the origin.

Example 10.4. Find the tangent at the origin to the curve y = x3

Solution. The curve y = x3 has y = 0 as tangent to the curve at the origin.since the
lowest degree term in the equation is y.

Example 10.5. Find the tangent at the origin to the curve

a2(x2 − y2) = x2y2

Solution. Lowest degree term in the above equation is a2(x2 − y2). Tangent at the
origin is given by (x2 − y2) = 0 ⇒ y = ±x
Thus y = x and y = −x are the two tangents at the origin.

III MULTIPLE POINTS
A point on a curve through which two branches of a curve passes is called as double
point or multiple point.

clearly a curve has two tangents at a double point , one for each branch.
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Double point is further classified as Node , a Cusp , isolated or conjugate point
according as the two tangents are Real and distinct , Coincident or Imaginary respec-
tively.

Nature of Double Point at the Origin

If there are two or more tangents to the curve at the origin , it is called a multiple
point.

Origin (Double Point) is classified as:

(a) Node: two tangents at the origin are real and distinct.

(b) Cusp: two tangents at the origin are real and coincident.

(c) Isolated : two tangents at the origin are imaginary.

Example 10.6. Find the nature of double point at the origin of the curve y2(a2 +
x2) + x2(a2 − x2) = 0.

Solution. x = 0, y = 0 satisfies the given equation thus curve passes through origin.

The lowest degree term in the equation is y2a2 + x2a2

thus tangents at the origin is given by

y2a2 + x2a2 = 0
⇒ y = ±ix(imaginery)

Hence, origin is a isolated point.

Example 10.7. Find the nature of double point at the origin of the curve y2(a−x) =
x3

Solution. x = 0, y = 0 satisfies the given equation thus curve passes through origin.

now lowest degree term in the equation is y2a thus tangent at the origin is given by
y2a = 0 or y = 0(real and coincident).

Hence, origin is a cusp.

Example 10.8. find the nature of double point at the origin of the curve y2(x+ a) =
x2(3a− x)

Solution. Clearly, x = 0, y = 0 satifies given equation thus curve passes through
origin.

lowest degree term in the equation is given by ay2 = 3ax2

thus tangent at the origin is given by ay2 − 3ax2 = 0

or y = ±x
√
3(real and distinct)

Therefore, origin is a Node.

IV POINT OF INTERSECTION WITH COORDINATE AXES
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(a) Find the points where the curve intersects the x-axis and the y-axis seperately.
take x=0 for the intersection of the given curve with y-axis and take y=0 for
the intersection of the curve with x-axis. In this way, we get points on the axes
through which a given curve may pass.

(b) Find the tangent to the curve at its point of intertsection with the coordinate
axes by first shifting the origin to this point and then equating to zero the lowest
degree term.

V REGION OF ABSENCE OF CURVE

If possible find the region of the plane where no part of the curve lies. such a region
is obtained on solving the given equation for y2 in terms of x (or x2 in terms of y).
Suppose y2 < 0 for x > a .Similarly if x2 < 0 for y > b , then the curve does not
lies in the region y > b.

VI ASYMPTOTES

Find out the Asymptotes of the curve,if any by inspection.

Recall that Asymptotes parallel to x-axis is given by equating to zero coefficient of
highest power of x and Asymptotes parallel to y-axis is given by equating to zero
coefficient of highest power of y.

VII POINT OF INFLECTION AND CONCAVITY

Check the points of inflexion and concavity of the curve by finding

(a) f ′′(x) = 0 (For points of inflexion)

(b) f ′′(x) > 0 (Curve concave upwards)

(c) f ′′(x) < 0 (Curve concave downwards)

10.5 Examples on Curve Tracing
Example 10.9. Trace the curve y2(a2 − x2) = a3x

Solution. We need to follow the steps mentioned below.

Step 1. Symmetry: the given equation is even in y so curve is symmetrical about x-axis.

Step 2. Origin: Curve satisfies origin. clearly origin is a cusp.

Step 3. Tangent at the origin is given by a3x = 0 or x = 0 i.e. y-axis.

Step 4. Asymptotes: Parallel to x-axis is given by y2a2 = 0 or y = 0.
Parallel to y-axis is given by (a2 − x2) = 0 or x = ±a.
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Step 5. For point of intersection with x-axis by put y = 0 in the equation. For point of
intersection with y-axis put x = 0 in the given equation.clearly (0, 0) is the only point of
intersection.

Step 6. Region of absence of curve:

We can write y2 = a3x
a2−x2

for 0 < x < a, y2 is +ve

for −a < x < 0, y2 is -ve

for x > a, y2 is -ve

for x < −a, y2 is +ve

Step 7. To trace it more accurately , take some points such as x = a
2
, a
3
, −a

2
, −a

3
,...... find

y corresponding to it and then trace.

Figure 10.1: Curve of equation y2(a2 − x2) = a3x

Example 10.10. Trace the curve y(x2 + a2) = a3

Solution. We need to follow the steps mentioned below.

Step 1. Symmetry: the given equation is even in x,so curve is symmetrical about y-axis.
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Step 2. Origin: Put x = 0,y = 0 in the given equation. It doesn’t satisfies equation.Thus
curve doesn’t passes through origin.

Step 3. Asymptotes:

Parallel to x-axis is given by ya2 = 0 or y = 0.

Parallel to y-axis is given by (x2 + a2) = 0 or x = ±ia (doesn’t exist).

Step 4. Intersection with coordinate axes:

For intersection with x-axis put y = 0 in the equation, we get a3 = 0 thus the curve
doesn’t intersect x-axis.

For intersection with y-axis put x = 0 in the given equation, we get ya2 − a3 = 0

⇒ a2(y − a) = 0⇒ y = a, so (0, a)is the point of intersection with y-axis.

Step 5. For tangent at (0, a),put y = y + a in the given equation.

We get (y + a)(x2 + a2) = a3 ⇒ yx2 + ya2 + ax2 + a3 = a3.

Lowest degree term is given by ya2 = 0⇒ y = 0(x-axis) is the tangent at (0, a).

Step 6. Region: x2 = a3−ya2

y
or x2 = a2(a−y)

y

(a) For y > a, x2 is -ve (no portion of curve lies)

(b) For 0 < y < a, x2 is +ve (curve lies)

(c) For y < 0 say y = −2a, x2 is -ve (no portion of curve lies)

Step 7. Further, give values to x = a
2
, a, 2a,.... to trace the curve more precisely.

Figure 10.2: Curve of equation y(x2 + a2) = a3
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Example 10.11. Trace the curve

y2(a+ x) = x2(3a− x)

Solution. We need to follow the steps mentioned below.

Step 1. Symmetry: the given equation is even in y,so curve is symmetrical about x-axis.

Step 2. The given equation satisfies x = 0 and y = 0 so curve passes through origin.

Step 3. Further, tangent at the origin is given by putting lowest degree term equal to
zero i.e. a(y2 − 3x2) = 0

⇒ y2 = 3x2

⇒ y = ±
√
3x

Thus, two real and distinct tangents exist at origin so origin is a Node.

Step 4. Asymptotes:

Parallel to x-axis : doesn’t exists.

Parallel to y-axis : x+ a = 0⇒ x = −a.

Step 5. For point of intersection with x-axis put x = 0 we get y = 0.

For point of intersection with y-axis put y = 0 we get x = 0,x = 3a.

So, (0,0) and (3a,0) are the points where the curve touches the coordinate axes.

Step 6. Tangent at (3a,0)

Let us change the origin from (0,0) to (3a,0)

put x = x+ 3a in the equation and then check for tangent at (3a,0).

y2(x+ 4a) = (x+ 3a)2(−x)

or, xy2 + 4ay2 = (x2 + 9a2 + 6ax)(−x)

or, xy2 + 4ay2 = −x3 − 9a2x− 6ax2

Now put lowest degree term equal to zero.
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i.e. 9ax2 = 0⇒ x = 0 (y-axis).

Thus y-axis is the tangent at point (3a,0).

Step 7. Region: We have y2 = x2(3a−x)
x+a

(a) y2 < 0 when x < −a i.e. for x = −2a,−3a , ....

(b) y2 < 0 when x > 3a

Thus no portion of the curve lies in a) and b).

Step 8. Find some more points on the curve by giving values to x such as x = a
2
, 2a,....

to trace the curve more precisely.

Figure 10.3: Curve of equation y2(a+ x) = x2(3a− x)
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Example 10.12. Trace the curve x2(x2 + y2) = a2(x2 − y2).

Solution. We need to follow the steps mentioned below.

Step 1. Curve is symmetrical about about both the axes. Since powers of x and y are
both even in the equation.

Step 2. x = 0, y = 0 satisfies the given equation thus curve passes through origin.

Step 3. Tangents at the origin is given by putting lowest degree term equal to zero,

i.e. x2 − y2 = 0.

⇒ y = ±x. We get two real and distinct tangent at the origin. Thus, origin is a Node.

Step 4. Asymptotes:

Parallel to x-axis doesn’t exist.

Parallel to y-axis is given by x2 + y2 = 0⇒ x = ±ia (does not exist).

Step 5. Point of intersection:

With x-axis put y=0 which gives x = 0, x = ±a

With y-axis put x=0 which gives y=0.

Thus, (0,0),(a,0),(-a,0) are the point of intersection with coordinate axes.

Step 6. Tangent at (a,0) and (-a,0)

Let us shift the origin to the point (a,0) by putting x = x+a, in the given equation. Also,
shift the origin to the point (-a,0) by putting x = x-a, then find the tangents.

We see that y-axis is the only tangent.

Step 7. Region:

We have y2 = x2(a2−x2)
x2+a2

y2 < 0 when x2 > a2 or x > a and x < −a.

Thus, no portion of the curve lies where x > a and x < −a.
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Step 8. We can further trace the curve by taking more points like x = a
2
, a
3
, −a

2
, −a

3
,...

Figure 10.4: Curve of equation x2(x2 + y2) = a2(x2 − y2)

Example 10.13. Trace the curve
ay2 = x(a2 − x2), a > 0

Solution. We need to follow the steps mentioned below.

Step 1. Symmetry: the given equation of curve is even in y, so curve is symmetrical
about x-axis.

Step 2. x = 0, y = 0 satisfies the equation thus the curve passes through the origin.

Step 3. Tangent at the origin can be found by putting lowest degree term equal to zero
in the equation, i.e.

xa2 = 0
⇒ x = 0 (y-axis)
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Thus, y-asis is the tangent at the origin.

Step 4. Asymptote:

Parallel to x-axis does not exists.

Parallel to y-axis does not exists.

Step 5. Point of intersection:

For intersection with x-axis put y = 0 in the equation, we get

x(a2 − x2) = 0⇒ x = 0,±a

Step 6. Tangent at (a, 0) and (−a, 0).

Shift the origin from (0, 0) to (a, 0) by substituting x = x+ a in the given equation, we
get

ay2 = (x+ a)[a2 − (x+ a)2]

= (x+ a)(a2 − x2 − a2 − 2ax)

⇒ ay2 = (x3 + 2ax2 + ax2 + 2a2x)

Tangent at (a, 0) is given by putting lowest degree term equal to zero in above equation,

i.e. 2a2x = 0⇒ x = 0.

Thus, x=0 (y-axis) is the tangent at (a, 0)

Similarly, at (−a, 0) y-axis is the tangent.

Step 7. Region:

We can write the given equation as y2 = x(a2−x2)
a

(a) For 0 < x < a , y2 is +ve (curve lies)

(b) For −a < x < 0 , y2 is -ve (curve does not lie)

(c) For x > a , y2 is -ve (curve does not lie)

(d) For x < −a , y2 is +ve (curve lies)

Step 8. Further to trace the curve more accurately give values to x like x = a
2
,−2a,−3a,......and

find the corresponding values of y. Plot these points.
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Figure 10.5: Curve of equation ay2 = x(a2 − x2), a > 0

10.6 Exercise
Trace the following curves:

1. a2x2 = y3(2a− y)

2. 4ay2 = x(x− 2a)2

3. 3ay2 = x(x− a)2

4. xy2 + (x+ a)2(x+ 2a) = 0

5. (x)
2
3 + (y)

2
3 = a

2
3

6. y(x2 + 4a2) = 8a3

7. y2x = a29a− x)

8. y2(2a− x) = x3

9. y2(a2 + x2) = x4

10. y2x2 = x2 + a2
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10.7 Summary
Curve tracing is a technique of drawing rough sketches of the algebraic curves by follow-
ing some standard steps like symmetry of the curve about axes, origin of the curve, shifting
origin to the point of intersection of the curves with x-axis and y-axis.

Finding tangents at the origin and at the point of intersection of the curve with the co-
ordinate axes. Finding multiple or double points of a curve such as Node, cusp, isolated
point. Finding asymptotes to a curve, region of absence and existence of a curve.

By following these very basic steps students can trace various algebraic curves and learn
their properties.which enhances their knowledge of drawing curves and solving various
problems of mathematics.
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