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1.1 Introduction

We have studied some concept of sets in earlier classes or standard. In this section
we will introduce the basis concept of set and some concepts related to the set like

4
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subset, power set and so on. We will deal with the Venn diagram also which describe
the concepts of set in more attractive way. We will introduce the statement or propo-
sition with some logical operations. This section also discussed about the conditional
statements and after that we will describe mathematical technique to proof the result
that is called Mathematical Induction.

The concept of set serves as a fundamental part of the present day mathematics.
Today this concept is being used in almost every branch of mathematics. Sets are used
to define the concepts of relations and functions. The study of geometry, sequences,
probability, etc. requires the knowledge of sets. In everyday life, we often speak of
collections of objects of a particular kind, such as, a pack of cards, a crowd of people,
a cricket team, etc. In mathematics also, we come across collections, for example,
of natural numbers, points, prime numbers, etc. A set is a well-defined collection of
objects.

1.2 Learning Objectives
After reading this lesson, the reader should be able to :
» define sets and its basic type
o understand the concept of power set and Venn diagram
o understand propositions and logical operations.
e learn about conditional statements.

e learn about a Mathematical technique of proof of results.

1.3 Sets

Definition 1.1. A well-defined collection of distinct objects is said to be set. These
objects is called elements or members of the set.

Remark 1. Usually we denote the set using capital letters like A;B,C,D and so
on.

2. All the elements of a set are written within braces.

3. We use the symbol “€” when an element belongs to the set and “¢” when an
element does not belong to the set.

4. The elements of a set are usually denoted by small letters a,b,c,x,y, etc.

Example 1.1. Let A ={1,2,3,4} isaset then 1 € A,2€ A,;3€ A,4€ A ( “€” reads
as “belongs to”) whereas 5 ¢ A, 7¢ A ( “¢” reads as “does not belongs to”).
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1,2,3,4 are the only elements of set A.

There are two method for representing a set:
(i) Roster or tabular form
(ii) Set-builder form

Roster or tabular form - In this form, we write a set as a list of all the elements of
the set within the curly braces {} separated by commas.

Example 1.2. (a) A = {2,4,6}
(b) B = {1,2,3,6,7, 14, 21,42}

In part (a), A is set of all positive even numbers less than 7 and in part (b), B is the
set of all natural number which divides 42.

Set-builder form - In this form, we write a set as all the elements of the set sat-
isfying a common property. All other elements outside the set does not satisfy that

property.
In example 1.2 (a), A = {2, 4,6} which has the common property that all the elements

of A are even number less than 7, therefore we can write the set A in set-builder form,
A = {x | z is even number less than 7}

In example 1.2 (b), B = {1,2,3,6,7, 14,21, 42} has set-builder form,
B = {z | x is odd number which divides 42}

Example 1.3. (a) A = {a,e,,0,u} has set-builder form,
A = {x | z is a vowel in English alphabet}

(b) A = {z | z is an odd number} has roster form,
A=1{1,3,57...,}

(c) The set consist of all letters with the word “hello” can be denoted by {h,e,l,0} or
in set-builder form {z | z is a letter in the word “hello”}

Example 1.4. (a) N : The set of all natural numbers
Roster form, N ={1,2,3,4,...}
Set-builder form, N = {x | z is a natural number}

(b) Z : the set of all integers
Roster form, Z = {0, £1,+2,...}
Set-builder form, Z = {z | = is an integer}

(c) Z* : the set of all positive integers
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Roster form, Z = {1,2,3,...}
Set-builder form, Z = {z | x is positive integer}

(d) Q : set of rational numbers
Set-builder form, Q = {z | = is rational number}

or Q={z|z=L pqeZ q#0}
There is no roster form of set of rational numbers.

Example 1.5. Write a set of the solution of equation z? +z — 6 = 0 in roster form.

Solution. )
T +x—-6=0
= (x—2)(x+3)=0
=>x=2,-3
set is {2,-3}

Example 1.6. Write the set A = {4,9,16,...} in set builder form.

Solution. A = {22,3% 42 ...}

A = {z | z is a square of natural number except 1

or A ={z|z=(n+1)? wheren € N}

Example 1.7. Write the set A = %, %, %, 2} in set-builder form.

Solution. A = {z | v = -7, wheren € Nand 2 < n <5}

Example 1.8. Write the set A = {x : x is positive integer and z? < 20} in roster form.

Solution. A = {1,2,3,4}

1.3.1 The Empty Set

Definition 1.2. A set which does not have any element is said to be an empty set. We
can call this set as null set or void set.

This set is denoted by ¢ or {}.

Example 1.9. (a) A = {z | z is real number and z? — 1 = 0}
then A = {} or A = ¢.

(b)A={z|2z eNand 1 <z <2}
then A = {} or A = ¢.

(c) A ={x|2*=4,zis odd}
then A = {} or A= ¢.

(d) A = {z | z is a student studying in both X and XI class}
then A ={}or A = ¢.
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1.3.2 Equal set

Definition 1.3. Two sets A and B are said to be equal if they have exactly the same
elements. we write it as A = B.

Remark. If two set A and B are not equal then we write it as A # B.

Example 1.10. (a) A = {1,2,3,4} and B = {3,4,1,2} then A=B.
(b) A = {1,2,3,4} and B = {z | x is positive integer and z? < 12}
then A= B as B ={1,2,3,4}.

(c) A={0}and B={z |2 —5=0} = {5}
then A # B.

() A={x|z>15and z <5} and B = {z | 2% = 25}
A = {} and B = {5, -5} then A # B.

1.4 Subsets

Definition 1.4. Let A and B be two sets, The set A is called subset of a set B if every
element of A is also an element of B. We denote it as A C B.

Remark. 1. By using the symbol “=-" which means “implies”, we can write the
definition of subset as A C Bifac A = a € B
We read this statement as A is subset of B if “a” belongs to A implies “a” belongs to
B.

U,

or A is subset of set B if “x” is an element of A implies “x” is an element of B.
2. If A is not subset of set B, we can denote it as A ¢ B.
3. A is a subset of itself i.e A C A.

4. ¢ is subset of every set.
Example 1.11. (a) Let A = {1,2,3} and B = {1,2,3,5,7} then A C B.

(b) Let A = {1,2,3} and B = {3,4,5,6} then B € A.

(c) Z*, the set of positive integer then Z* C Z

Example 1.12. Let A = {1,2,3,4,5,6}, B = {2,4,5,6} and C = {1,2,3,4,5,6} then

AgBanngA
BCCandC¢B
ACCandCCA
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1.4.1 Power Set

Definition 1.5. For any set A, the collection of all subsets of a set A is called the power
set of A. It is denoted by P(A), i.e. P(A) ={S | S is subset of A}.

Remark - In P(A) every element is a set.
Example 1.15 (a) Let A = {1,2} then P(A) = {¢, {1}, {2}, {1,2}}
(b) Let A = {1,2,3} then P(A) = {¢, {1}, {2}, {3}, {1,2},{1,3},{2,3}{1,2,3}}

Remark 1. n(A) denote the number of elements in the set A.

2. If n(A) = m, then n(P(A)) = 2™.

1.4.2 Finite and Infinite sets

Definition 1.6. A set which is empty or which has exactly n distinct elements, where
n € N, is called finite set. A set that is not finite is called infinite set.

In this case, n is called the cardinality of A and is denoted by |A]|.
In example 1.15 (b), |A| =3 and |P(A)| =8
Note: The set of integers is infinite.

1.5 Venn Diagram

We have deal with the elements and subsets of a set. For example, when we study the
system of numbers, we are interested in the set of natural numbers and its subsets
such as the set of all prime numbers, the set of all even numbers, and so on. This
basic set is called the “Universal Set”. The universal set is usually denoted by U, and
all its subsets by the letters A, B, C, X etc. Most of the relationships between sets
can be represented by means of diagrams which are known as Venn diagrams. These
diagrams consist of rectangles and closed curves usually circles. The universal set is
represented usually by a rectangle and its subsets by circles. In Venn diagrams, the
elements of the sets are written in their respective circles.

Example 1.13. Let A = {1,2,3,4} and B = {2,3,6} then
Venn diagram
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Example 1.14. Let A = {1,2,3,4,5} and B = {4,5} then
Venn diagram

Example 1.15. Let A = {1,3} and B = {4,5}
then Venn diagram

In-text Exercise 1.1. In-text Exercise 1.1

1. Let A={1,2,4,a,b,c}. Identify each of the following as true or false.

2. In each part, give the set of letters in each word by listing the elements of the
set.
(a) AARDVARK
(b) BOOK
(¢) MISSISSIPPI
3. Let A= {1,{2,3},4}. Identify each of the following as true or false.

(a) 3 A
(b) {14} C A
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(c) {2,3}C 4
(d) {2,3) € A
(e) {4} € A

(f) {1,2,3} C A

In Exercise 4 and 5, write the set in the form {z | P(z)}, where P(z) is a property
that describes the elements of the set.

4. {a,e,i,0,u}
5. {—2,-1,0,1,2}

6. Which of the following sets are the empty set?

{z | x is a real number and z? + 1 = 0}

{x | z is a real number and z* = —9}

(e) {x | z is a real number and x =z 4 1}
7. List all the subsets of {JAVA, PASCAL, C++}.
8. Let A= {1,2,5,8,11}. Identify each of the following as true or false.
(a) {5,1} C A
(b) {8,1} € A
(c) {1,8,2,11,5} ¢ A
(d) o CA
(e)
(f)
(g) {3} ¢ A
(h) AC{11,2,5,1,8,4}

9. Let A={1},B={1,a,2,b,c},C ={b,c},D ={a,b}, and E = {1,a,2,b, ¢, d}.
For each part, replace the symbol [ with either C or ¢ to give a true statement.
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In Exercise 10, find the set of smallest cardinality that contains the given sets as
subsets.

10. {1,2},{1,3}, @

11. Is it possible to have two different (appropriate) universal sets for a collection
of sets? Would having different universal sets create any problems? Explain.

12. Use the Venn diagram to identify each of the following as true or false.

(a) BC A
(b)y ACC
(¢ CCB
(d) we A
(e) te A
(f) we B

13. Complete the following statement. A generic Venn diagram for three sets has
regions. Describe them in words.

14. If P(B) = {{}, {m}, {n}, {m,n}}, then find B.
15. If P(B) = {{a},{}, {c}, {b,c},{a,b},...} and |P(B)| =8, then B =
In Exercise 16, draw a Venn diagram that represents these relationships.

16. r€e AreBrx¢ CyeByecC,andy ¢ A
1.6 Propositions and Logical Operations

A declarative sentence or a meaningful sentence which is either true or false but not
both is called statement or proposition.

Example 1.16. The earth moves around the sun.
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Solution. The declarative sentence is a statement which has true value or which is
true.

Example 1.17. 24+ 3 =06

Solution. The declarative sentence is a statement which has false value or which is
false.

Example 1.18. Do you go to college?
Solution. It is a question, so this is not a statement.
Example 1.19. Is 5 + = 10 statement?

Solution. It is a declarative sentence but not a statement as the value of this statement
depends on x.

1.6.1 Logical Connectives and Compound Statements

We generally use the letter z,y, z, ... as the prepositional variables and these variable
may be replaced by any real number. Also the mathematical operations are used to
combine two or more variables. In similar way, the letters p,q,r,... denote propo-
sitional variable i.e these variable may be replaced by any statement or proposition.
When we combine two or more statement by some logical connectives, then we get a
compound statement.

Example 1.20.

p : The Sun is not shining today.
q : Its raining.

p and q : The sun is not shining today and its raining.

Hence we combine the statement p,q by the connector “and” and get the compound
statement p and ¢q. The true or false value of any compound statement depends on
the true or false value of statements and on the type of connectives to be used. Now
we will discuss some important connectives.

Negation - If p is any statement, then negation of p is a statement “not p” and
denoted by “~ p”.

Remark. 1. If p is true, then ~ p is false.
2. If p is false, then ~ p is true.

Truth Table - A table which shows the truth values of a compound statement in
terms of its component parts, is said to be a truth table.

The truth table table of negation of statement p is given as follows:
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p|~P
T| F
F| T

Example 1.21. p: 24 3 > 1, is an statement. Give the negation of this statement.

Solution. ~p:2+4+3<1
Since p is true and therefore ~ p is false.

1.6.2 Conjunction

If p and q are two prepositions, then conjunction of p and ¢ is a compound statement
“p and ¢” denoted by p A q. The connective “and” is denoted by symbol A.

Truth table of conjunction is given as follows:

b/Ag

o>

SRS RE] LS
SR ] RS

Example 1.22. Form the conjunction of p and ¢ where p:3 <4 and ¢: —5 > —9

Solution. pAqg:3<4and—5> -9
since the statement p is true and q is also true. Therefore the value of p A ¢ is also
true.

Example 1.23. Form the conjunction of p and ¢ where p : 5 is positive integer and
q: V/2 is rational number.

Solution. p A ¢ : 5 is positive integer and /2 is rational number.
since p is true and q is false. Therefore the value of p A ¢ is false.

Example 1.24. Find the truth table of (p A ¢) A ~ p.

pla|pAg|~p|(PAg A~p
TIT| T | F F
F|T| F | T F
T F| F | F F
FIF| F | T F

1.6.3 Disjunction

If p and ¢ are two prepositions, then disjunction of p and ¢ is compound prepositions
“por q” denoted by pV ¢q. The connective “or” is denoted by symbol V. Truth table
of disjunction is given as follows:



A.C.-22.11.2022

Appendix-112
1.6. PROPOSITIONS AND LOGICAL OPERATIONS 15
Plqg|pVg
T|T| T
T | F| T
F|T| T
F|F| F

Example 1.25. Form the disjunction of p and ¢ where p : 2+ 5 # 8 and ¢ : Delhi is
Capital of India.

Solution. pV ¢ : 2+ 5 # 8 or Delhi is Capital of India.
since p is true and ¢ is true.
Therefore the disjunction p V ¢ is true.

Example 1.26. Find the truth table of (pV q) A ~ p.

pla|lpVag|~p| (Vg A~p
T|T| T | F F
TIF| T | F F
FIT| T | T T
FIF| F | T F

1.6.4 Quantifiers

We have to learned how to write a set in set-builder form. In this form we specified
the property of all elements of a set and write the property in a statement. If this
statement is true then that element lies in that set. Here we will denote this state-
ment by P(x) and its called predicate. Each choice of = gives the proposition p(x)
that is either true or false. There are two common constructions first “if P(x), then
execute the particular step” and second is “while Q(z), do specific action ” These two
predicates P(z) and Q(x) are called the guard for the block of programming code in
computers.

Example 1.27. Let A = {z | z is an integer less than 5}. Here A is a set-builder form,
P(z) is the statement “x is an integer less than 5”. P(1) is “1 is an integer less than
17, which is true. Therefore 1 € A. Similarly we can check that P(2), P(3), P(4) are
only true statements. Hence A = {1,2,3,4}

Now we will see that there is a universal quantification of a predicate P(x) which is
a statement “For all value of x,P(x) is true”. This universal quantification of P(x) is
denoted by V z P(z). The symbol “V” is called universal quantifiers.

Example 1.28. Let Q(z) : x+10 < 15. Then for all x Q(x) is false statement as Q(12)
is not true.

In-text Exercise 1.2. 1. Which of the following are statement?
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(a) Is 2 a positive number ?

(b) 22 +2+1=0

(c) Study logic.

(d) There will be snow in January.
)

(e) If stock prices fall, then I will lose money.
2. Give the negation of each of the following statements.

(a) It will rain tomorrow or it will snow tomorrow.
(b) If you drive, then I will walk.
3. In each of the following, form the conjunction and the disjunction of p and q.
(a) p: 1 will drive my car.
q : I will be late.
(b) p: NUM > 10
q: NUM <15

4. Determine the truth or falsity of each of the following statements.

a) 2 < 3 or 3 is a positive integer.

(a)
(b) 2> 3 or 3 is a positive integer.
(¢) 2 < 3 or 3 is not a positive integer.

(d) 2 > 3 or 3 is not a positive integer.

5. find the truth value of each proposition if p and r are true and ¢ is false.

a) ~p AgVr)

) p A(~(gV~T1))
(c) rA~q)V(pVrT)
(d) (g Ar)A(PV ~T)

1.6.5 Conditional Statements / Implication

If we consider two prepositions p and ¢ then the compound statement “if p then ¢”, is
called conditional statement or implication. We will denote this compound statement
by “p = ¢”. The first statement p is called the antecedent or hypothesis and the
second statement ¢ is called consequent or conclusion.

Example 1.29. Let
p : Weather is bad.

q : Its raining

Form the implication p = ¢
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Solution. p = ¢
If weather is bad, then its raining.

The compound statement “if p then ¢ ” has either true or false value, depends upon
the true or false value of p and g statement. Truth table of p = ¢ is as follows:

P14q|pP=4¢g
T| T T
T|F F
F|T T
F|F T

If p = ¢ is an implication, then the converse of p = ¢ is ¢ = p and the contrapositive
of p=q is ~q= ~np.

Example 1.30. Find the contrapositive and converse of the compound statement “If
it is raining, then I will not go market”.

Solution. Let p : It is raining

q : I will not go market

statement p implies ¢

Converse - ¢ = p

i.e If I will not go market, then it is raining.
Contrapositive - ~q¢=~p

If T will go market, then it is not raining.

1.6.6 Biconditional / Biimplication

Let p and ¢ are prepositions then the compound statement “p if and only if ¢” is
called an equivalence or biconditional. It is denoted by p < ¢. This has true or false
value, depends on the true or false value of p and ¢. Truth table of p < ¢ is as follows:

P14 |P=4q
T|T T
T|F F
F|T F
F|F T

Example 1.31. Let 5 > 3 if and only if 0 < 5 — 3. Then this equivalence is true or
false ?

Solution. Let
p:o>3
qg:0<5-3

Since p is true, ¢ is also true,
therefore p < ¢ is true.
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Example 1.32. Find the truth table of (p = ¢q) < (~ ¢ = ~p)

plalp=q|~q|~p|~q=>~p|lp=q9 S (~q=>~p)
T(T| T F | F T T
TIF| F T | F F T
FIT| T F | T T T
FIF| T T | T T T

A compound preposition that is always true is called tautology. A compound prepo-
sitions that is always false is said to be contradiction or an absurdity, and a statement
that may be either true or false, depending on the true or false value of its proposi-
tional variables, is said to be contingency.

Example 1.33. In example 1.35 the equivalence p = ¢ < (~ ¢ = ~ p) has true value
always. Therefore it is tautology.

Example 1.34. The statement p A ~ p has truth table.

p|~p|pA~Dp
T| F F
T| F F
F| T F
F| T F

Since it has always false values, therefore p A ~ p is contradiction.

Example 1.35. The statement (p = ¢) A (p V q) has truth table.

plalp=q|pVe| =9 NPV
T|(T| T T T
T F| F T F
FIT| T T T
FIF| T F F

Since the value of given statement depends on the value of p = ¢ and pV ¢q. Therefore
this is contingency.

Theorem 1.1. The operations for propositions have the following basic logical equiv-
alence properties.
Commutative Properties
1.pVg=qVp
2.pANg=qADp
Associative Properties
3.pV(gVvr)=(pVq Vr
4. pANgAT)=((pPAg AT
Distributive Properties
5.pVigAr)=(@VaA(pVr)



A.C.-22.11.2022
Appendix-112

1.6. PROPOSITIONS AND LOGICAL OPERATIONS 19

6. pA(gVr)=(@AgV(pAT)
Idempotent Properties

7. pVp=p
8. pAp=p
Properties of Negation
9. ~(~p)=p
10. ~(pVg) = (~p)A(~q)
1. ~(pAg)=(~p)V(~q)

Theorem 1.2. (a) (p=q) = ((~p)Vq)
b)) =g =(~qg=>~
() pea=((p=q9A
d) ~p=¢g=p@PA~q)

() ~peg=((pA~q9VpA~q)

Theorem 1.3. Each of the following is a tautology.

a) (pAq)=p
(PAq)=q

(~pA(PVQ)=q
i) (~gAN(p=4q)=~p
) (p=aN@g=r)=p@=r)

The results of theorem 2 and theorem 3 can be proved using truth table.

In-text Exercise 1.3. 1. Write each of the following statements in terms of p, ¢, r,
and logical connectives where p : I am awake; ¢ : I work hard; r : T dream of
home.

(a) T am awake implies that I work hard.
(b) T dream of home only if I am awake.
(c) Working hard is sufficient for me to be awake.

(d) Being awake is necessary for me not to dream of home.
2. State the converse of each of the following implications.

(a) If 2+ 2 =4, then I am not the Queen of England.
(b) If I am not President of the united states, then I will walk to work.
(c¢) If T am late, then I did not take the train to work.
(d)
)

(e) If I have enough money, then I will buy a car and I will buy a house.

If T have time and I am not too tired, then I will go to the store.
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. Determine the truth value for each of the following statements.

)
b)
()

)

(d) If 2 is odd, then New York has a small population.

(a) If 2 is even, then New York has a large population.
(b) If 2 is even, then New York has a small population.

If 2 is odd, then New York has a large population.

. Let p,q, and r be the following statements: p : I will study discrete structure;

q : I will go to a movie; r : I am in a good mood. Write English sentences
corresponding to the following statements.

. Let p,q,r and s be the following statements: p:4 >1; ¢g:4<5; r:3<3; s:

2 > 2. Write English sentences corresponding to the following statements.
(a) (pAs)=gq
(b) ~
(€) (~r)=p

. Construct truth tables to determine whether the given statement is a tautology,

a contingency or absurdity.

(a) p= (¢=p)
(b) ¢= (¢ =p)

. If p = q is false, can you determine the truth value of (~ (pA¢q)) = ¢7 Explain

your answer.

1.7 Mathematical Induction

We use generally some techniques to proof the results and statements in mathematics.
Mathematical Induction also one of the technique to proof the results. If we want to
proof some result or statement or any other formula working for all natural numbers
then we can use this technique, In this technique, first we will prove that the given
result is true for n = 1 and then assume that the result is true for any £ € N. Now
we will show that the given result is also true for k£ + 1. Therefore this technique says
that the result is true for all n € N. These steps is called induction step. Hence this
technique is called Mathematical Induction.
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Example 1.36. Show that the following result is true for all n > 1, by mathematical
induction
14243+, 4n ="t

n(n+1) _ 1(141) _ 2 _
5 = =2=1

Solution. for n =1, 5 5

which is clearly true.

Let result is true for n = k

k(k+1
ie 1+2+3+...+k_% (1.1)

Now we will show that result is true for n =k + 1

14243+, +k+k+1=014+2+... +k)+k+1

= —k(k; D +k+1 (using1.1)
k(k+1)+2(k+1)
2
(k+1)(k+2)
2
(E+1)((k+1)+1)

2

Thus we have proved that the result is true for n =k + 1
Hence by Principle of Mathematical Induction, the result is true for all n > 1.

Example 1.37. Let Ay, As, A3 ... A, be any n-sets. Show the following result using
mathematical induction.

Ja)=N4

i=1

(where A denote the complement of set A)

Solution. for n = 1, A; = A; which is clearly true.

Let result is true for n = k

k k
(U Ai) = ﬂ A (1.2)

i=1

Now we will show that the result is true forn =&k + 1
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k+1
(JA) =4 UAUA U U4,
i=1

:AluAQUUAkUAk:-i-l
= (A UAy U U A U Ay
= (A UAU...UA) N Ap

k

= (ﬂ A)N Ay (using 1.2)
i=1
k+1

-Nm

Thus we have proved that the result is true for n = k + 1.

Hence by Principle of Mathematical Induction, the result is true for all n > 1.

In-text Exercise 1.4. In Exercise 1 through 4, prove the statement is true by using
mathematical induction.

1.

2.

24+446+...+2n=n(n+1)
14284224 42 =2ntl 1

6

atar+ar+.. . +am =" forr £1

- 1-r

Summary

A well defined collection of objects is said to be set. These objects is called
elements or members of the set.

Methods for representing set

(i) Roster or tabular form

(ii) Set-builder form
A set which does not have any element is called empty set.
Two sets are said to be equal if they have exactly same elements.
A is subset of a set B if every element of A is also belongs to B.
The collection of all subset of a set A is called power set of A.

A set which has n distinct elements or empty set is called finite otherwise infinite.
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A declarative sentence or a meaningful sentence which is either true or false but
not both, is called statement or proposition.

The letter p,q,r,... denote proposition variables.

When two or more statements or propositions combined by logical connectives,
then it is called compound statements.

p is a statement, then negation of p is the statement not p, denoted by ~ p.

A table which shows the truth values of a compound statement in terms of its
component parts, is said to be a truth table.

If p and ¢ are two statements, then conjunction of p and ¢ is the compound
statement “p and ¢” denoted by p A gq.

If p and ¢ are two statements, disjunction of p and ¢ is the compound statement
“por q” denoted by pV q.

P(z) is called predicate of a set in set-builder form.

If p and ¢ are two statements then “if p then ¢ ” is called conditional statement.
If p = q then ¢ = p is converse ~ ¢ = ~ p is contrapositive.

A statement that is always true is tautology.

A statement that is always false is contradiction.

A statement that may be either true or false is called contingency.

Mathematical Induction - We will check the result for n = 1, assume it is true
for n = k and will show for n = k + 1.

1.9  Self-Assessment Exercise

1.10 Solutions to the In-text Exercises

Solutions to the In-text exercise 1.1

) True
) False
) False
(d) False
) True
) False
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. {z | = is a vowel }
Az |reZ and 2*? <5}

(b), (¢), (e)

. {},{JAVA}, {PASCAL}, {C++}, {JAVA, PASCAL}, {JAVA, C++}, {PASCAL,
C++}, {JAVA, PASCAL, C++}.

N ™S IN WS IN 1N

. Yes, Yes, the complement of a set would not be defined unambiguously.

(a) False
(b) False
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(c) Insufficient information
(d) False
(e) True
(f) True

Eight. There are three parts that represent what is left of each set when common
parts are removed, three regions that each represent the part shared by one of
the three pairs of sets, a region that represents what all three sets have in
common, and a region outside all three sets.

B ={m,n}
B ={a,b,c}

VDN

is one solution.

Solutions to the In-text exercise 1.2

. (b), (d), and (e) are statements.

(a) It will not rain tomorrow and it will not snow tomorrow.
(b) It is not the case that if you drive, I will walk.
(a) I will drive my car and I will be late.
I will drive my car or I will be late.
(b) 10 < NUM < 15.
NUM > 10 or NUM < 15.
) TRUE
b) TRUE
) TRUE
) FALSE

(a) FALSE
(b) TRUE
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(¢) TRUE
(d) FALSE

Solutions to the In-text exercise 1.3

If T am not the Queen of England, then 242 =4
If T walk to work, then I am not the President of the United States.

If T go to the store, then I have time and I am not too tired.

If I buy a car and I buy a house, then I have enough money.

True
False
True

)

)

)

)

)

)

(¢) If I did not take the train to work, then I am late.

)

)

)

)

)

) True
)

If T do not study discrete structures and I go to a movie, then I am in a
good mood.

(b) If T am in a good mood, then I will study discrete structures or I will go
to a movie.

(c) If I am not in a good mood, then I will not go to a movie or I will study
discrete structures.

I will go to a movie and I will not study discrete structures.

It is not true that 3 < 3 and 4 < 5..

)
(a) If 4 >1and 2> 2, then 4 < 5.
(b)
) If 3> 3, then 4 > 1.

p = (q

SRR IS
HHm e

— =+

tautology
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p qlq =|(=Dp
T T T T
T F T T

(b) F T F F
F F T T

/[\
contingency

7. Yes. If p = ¢ is false then p is true and q is false. Hence p A q is false, ~ (p A q)
is true, and ~ (p A q)) = ¢ is false.

Solutions to the In-text exercise 1.4

Note: Only the outlines of the induction proofs are given. These are not complete
proofs.

1. Basicstep: n=1 P(1):2(1) =1(1+1) is true.
Induction step: P(k):2+4+4+4 ...+ 2k =k(k+1).
Pk+1):24+4+...+2(k+1)=(k+1)(k+2).
LHS of P(k+1) : 2+4+.. . +2k+2(k+1) = k(k+1)+2(k+1) = (k+1)(k+2)
RHS of P(k +1).

2. Basic step: n =0 P(0):2° =21 — 1 is true.
Induction step: LHS of P(k+1) : 14214224, 42k 42k = (2FF1 1) 4 2k =
2.2k+1 1,
RHS of P(k + 1).

3. Basicstep: n=1 P(1):1? = % is true.
Induction step: LHS of P(k+ 1) :
124+ 22+ .+ k2 + (k+1)?

_ k(k+ 1)6(2k+ 1) (k1)

~ kit 1)(k(2k—|— 1)

6
= %(zkz +k+6(k+1))
= %(%2 + 7k + 6)
(k+1)(k +2)(2k + 3)
6
k+1D((k+1)+1)(2(k+1)+1)
6

+(k+1))

RHS of P(k + 1).
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4. Basicstep: n=1 P(1):a= aq%:l) is true.
Induction step: LHS of P(k+1):a+ar+ ...+ ar* ! +ark = a(%rk) +ark =

a—ar’tart—arl _ aQor™t) RYS of Pk 4 1),

1—r 1—r
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2.1

Learning Objectives

After going through this chapter, the reader should be able to:

define various types of relations on a set;
understand about the various properties of relations;
define the equivalence relations and equivalence classes;

define the partial order relation and partially ordered set.

29
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2.2  Introduction

Mathematics is all about finding the patterns - a recognisable link between quantities.
In day-to-day life, we come across several patterns that characterize relations such as
father and son, brother and sister, teacher and student etc. In the arena of Mathe-
matics, we come across many relations between objects/numbers such as number m
is less than or equal to n, set A is a subset of B. In al these cases, one can notice
that a relation always involves pairs of objects in a particular order. Relation maps
elements of one set to the elements of another sets.

In this chapter, we will study about the importance of relations and their proper-
ties. We will also discuss about the equivalence class and partial order relation and
their importance in the field of Algebra and Discrete Mathematics. Relations and
partial order set are the building block of the discrete mathematics.

2.3 Relations and their properties

In this chapter, our main focus will be on relations only and their various types.
Suppose A is the set of all subjects offered by the University of Delhi and B is the
collection of all the students admitted in School of open learning, University of Delhi,
then a relation R can be defined between A and B as follow. Let x € A and y € B,
then, we say x is related to y by the relation R if a particular subject x is chosen by the
student y, and we denote this by xF'y. Since, in a relation order matters, therefore,
we say R as a relation from A to B. One can define more than one relation between
the set A and B. Suppose, A is the set of all real numbers, then, in mathematics,
unknowingly, we already studied many commonly used relations from A to A. The
most common relation between A to A is “less than,” which is usually denoted by <.
We say x is related to y if + < y, on the other hand, >, >, and < are examples of
relations over A, the set of real numbers.

One of the easiest way to represent a relation between a set A to B is “to write
their elements in ordered pair precisely.” That is, suppose that A = {1,2,3,4} and R
is a relation from A to A define as follow: Let xRy if and only if x = y + 2. Then,
one can easily verify that the element 3 is related to 1. For, this relation, we can
easily write all the pairs which are related to each others, which are 3R1 and 4R2.
For a relation, most of the times, it would be enough to provide the foregoing list of
related pairs. Therefore, we can say that the relation R is completely known if all
R-related pairs are known. The above defined relation R can be written in the form
of ordered pairs, {(3,1), (4,2)}. In each ordered pair, the first element is related to its
corresponding second element. This method of specifying a relation does not require
any special symbol or description and so is suitable for any relation between any two
sets.

Note. From this ordered pair notation, one can easily say that a relation from the set
A to B is a subset of A x B.

On the other hand, any subset of A x B can be treated as a relation from A to B,
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even if we have no alternative description for the same. Now, we define the notion of
a relation formally:

Definition 2.1. Let A and B be two nonempty sets. Then a relation R from A to B
is a subset of directed set A x B, that is, R C A x B. Whenever the ordered pair
(a,b) € R, we say the element a is related to b by the relation R. Sometimes, we
denote the same with aRb.

Suppose a is not related to b by R, then we write a&b. Now, we provide a number
of examples to illustrate the concept of relation.

Example 2.1. Let A ={1,2,3,4} and B = {a,b}. Then R = {(1,a),(2,b),(4,a)} is a

relation from A to B.

Example 2.2. Let A = {1,2,3,4}. Then we define a relation R on A
aRb if and only if a > b

Then
R={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)}

Example 2.3. Let A = R be the set of all real numbers. Then, we define the relation
R on A:
xRy if and only if 2 and y holds the equation 2> +¢* = 1

In the above example, we have the collection of all the ordered pairs, which lie on
the unit circle.

Example 2.4. Let A be the set of all the straight lines in a plane. Then, we can define
the following relation R on A:

1 Rl5 if and only if [; is perpendicular to lo
Next we define some notion which are used frequently in relation.

Definition 2.2. Let R be a relation from A to B. Then the domain of R, denoted by
Dom(R), is the collection of all the elements in A, which are related to some element
in B.

That is, Dom(R) is the collection of all the first elements in the ordered pairs in

R.

Definition 2.3. Let R be a relation from A to B. Then the range of R, denoted
by Ran(R) is the subset of B having all those elements which are paired with some
element in A.

Note. All the elements of A and B, which are not in Dom(R) and Ran(R) in any way
respectively, are not part of relation R.

Example 2.5. In the Example 2.2, the Dom(R) = {2,3,4} and Ran(R) ={1, 2, 3}.
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Example 2.6. In the Example 2.3, the Dom(R) = Ran(R) = [—1,1].

Definition 2.4. Let R be a relation from A to B and let 2 € A. Then we define R(x),
the R-relative set of x as

R(z) ={y e B | (x,y) € R}
that is, the collection of all the elements of B which are related to x.

Similarly, let A; C A, then the R-relative set of Ay, which is denoted by R(A;) is
defined as

R(Ay) ={y € Bl(x,y) € R for some = € A;}.

From the definition, we can easily notice that R(A;) is the union of the sets R(x) for
x e Al.

Example 2.7. Let A be the collection of all the English alphabet and let

R ={(a,0),(a,a),(a,c),(b;5), (¢, a), (c,d), (¢, [), (d, f)}

. Then, here R(a) = {a,b,c} and R(b) = {s}. Let Ay = {c¢,d}, then R(4;) =
{a,d, f}.

In the following result, we show some set theoretic relation between the R-relative
sets.

Theorem 2.1. Let R be a relation from A to B and let A; and As be two nonempty
subsets of A. Then:

1. If Ay C Ay, then R(A;) C R(Ay);
2. R(A;|JAs) = R(A)) JR(Ay);
3. R(A1[Az2) € R(A1) N R(Az).

Proof. Let R be a relation from A to B and let A; and A, be two non-empty subsets
of A.

1. If y € R(A,), then there exists some x € A; such that (x,y) € R. By the given
hypothesis, we have A; C As, thus we have x € Ay. Hence, we have y € R(A,).
Therefore

R(A;) C R(Ay).

2. Since, we have A; C (A;|J As) then by part (1), we have
R(A1) C R(A; | Av).
Similarly, Ay C (A;|J Az) implies that

R(A) € R(A; | Av).
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Thus, we have

R(A) [ J R(42) € R(A [ JAy).

Conversely, let y € R(A;|J Az), then there exists some x € Ay [J A such that
(x,y) € R. Since x € A;|JAs, then either a € A; or © € Ay or in both. If
x € Ay and (x,y) € R, therefore, we must have y € R(A;). Similarly, if x € Ay,
then we have y € R(Ay). In both the case, we have y € R(A;)J R(As). Hence,
we have

R(A1 | JA2) € R(A) | R(4y).
Thus,
R <A1 U AQ) — R(A) | R(A).
3. Since, we have Ay [ Ay € Ay and Ay () A2 C Ay, then by part (1), we have
R(A () A2) € R(AY)

and

R(A;[)A2) € R(A2).

Thus, we have

R(A;[)A2) € R(A1) [ R(A2)

]

In the above Theorem, equality in part (3) does not hold good in general. For
this, we have the following example.

Example 2.8. Let R be a relation define on a set A = {a,b,c,d, e, f} as

R ={(a,a),(a,b),(a,c), (b a), (b,¢), (¢,d), (¢, a)}

Then, we consider A; = {a} and Ay = {b}. Then, we have R(A;) = {a,b,c} and
R(As) = {a,c}. Here, we have A;N Ay = (), thus R(A1NAy) = 0 but R(A;)NR(As) =
{a,c} # 0.

In the following result, we will show that a relation can be determine with the
help of its R-relative sets.

Theorem 2.2. Let R and S be two relations from the set A to B and let R(a) = S(a)
for alla € A, then R = S.

Proof. Let (a,b) € R, then we have b € R(a). By the given hypothesis, we have
R(a) = S(a), that is, b € S(a). Therefore, we have (a,b) € S. Hence, R C S.
Similarly, we have S C R. Thus, R = 5. 0

In-text Exercise 2.1. 1. Find the domain and range of the following relation R:
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(a) A={a,b,c,d} and B ={1,2,3}
R= {(a’ 1)7 (av 2)’ (bv 1)7 (Cv 2)7 (d, 1)};
(b) A=1{1,2,3,4} and B ={1,4,6,8,9}. The relation R is define as follow:

aRb if and only if b = a?;
(¢) A=1{1,2,3,4,8} and B = {1,4,6,9}; aRb if and only if a divides b;
(d) A=1{1,2,3,4,8} and B = {1,4,6,9}; aRb if and only if a < b.

2. Let A = R be the set of all real numbers. Then, consider a relation R on A
such that aRb if and only if 2a + 3b = 6. Find Dom(R) and Ran(R).

3. Let A =N, the set of all natural numbers, and R be the relation defined as aRb
if and only if there exists a k € N such that a = b*. Then find

2.4 Types of Relations

In this section, we will learn about the various types of relations. In many real life
applications, we deal with relations on a set A to A rather than from A to B.

2.4.1 Reflexive and Irreflexive Relations

Definition 2.5. A relation R on a set A is said to be reflexive if (a,a) € R for all
ac A

That is, a relation is reflexive if every element of A is related to A.

Example 2.9. Let A be the set of all real number. Then consider a relation R on A,
define as (a,b) € R if and only if a < b.

Then, one can easily check that for all a € R, we have a < a. Thus, R is a reflexive
relation.

Definition 2.6. A relation R on a set A is said to be irreflexive if a&a for every a € A.
That is, a relation is irreflexive, if no element of A is related to itself.
Example 2.10. Let us consider a relation
R={(a,b) e Ax A | a#b}

Then, R is the relation of inequality on A. Then R is irreflexive, because (a,a) ¢ R
for all a € A.

Remark. Irreflexive is not the negation of reflexive. The negation of reflexive would
be:



A.C.-22.11.2022
Appendix-112

2.4. TYPES OF RELATIONS 35

not reflexive if there exists some a € A such that aRa.
Thus, there are relations, which are neither reflexive nor irreflexive.

Example 2.11. Let A = {1,2,3,4} and R be a relation on A define as
R= {<17 1)7 (17 2)7 (27 3)a (37 3)7 (47 4}

Here, (2,2) ¢ R, therefore R is not reflexive. Also, we have (1,1) € R, thus R is
neither irreflexive as well.

From the last example, one can conclude that reflexive and irreflexive relations
are not complement to each other. We have relations, which are neither reflexive nor
irreflexive.

Remark. By the definition of reflexive relation, one can observe that R is reflexive on
a set A, then
Dom(R) = Ran(R) = A.

2.4.2 Symmetric, Antisymmetric and Asymmetric Relations

Definition 2.7. A relation R on a set A is said to be symmetric if whenever (a,b) € R,
we have (b,a) € R.

Remark. A relation R is not symmetric if there exists some a and b € A such that
aRb, but bRa.

Example 2.12. Let A be a set of all person living in Delhi and let R be relation on A
defined as
(x,y) € Rif and only if xis friend of y.

Then R is a symmetric relation. As, whenever (x,y) € R, means x is friend of y,
which means y is friend of x. Therefore (y,z) € R.

Definition 2.8. A relation R on a set A is said to be asymmetric if whenever (a,b) € R,
then (b,a) ¢ R.

We can observe the following:

Remark. A relation is not asymmetric if there exists have some a,b € A such that
whenever (a,b) € R implies that (b,a) € R too.

Example 2.13. Let A = {1,2,3,4} and let
R = {(17 2)7 (27 2)7 (374)’ (4’ 1)}
Then R is not asymmetric, as (2,2) € R.

Definition 2.9. A relation R on a set A is said to be antisymmetric if whenever
(a,b) € R and (b,a) € R, then a = b.

That is, a relation is antisymmetric if whenever a # b, then either aRb or bRa.
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Example 2.14. Let A be the set of all natural numbers and let
R ={(a,b) € Ax A|a divides b}

Let us consider two elements a,b € A. Suppose a divides b and b divides a, then we
have a = b. Hence R is antisymmetric relation.

Is R defined in the last example, a symmetric or asymmetric relation?

Example 2.15. Let Z be the set of all integers and let

R={(z,y) |z <y}

Then, one can easily verify that if x < y, that is, xRy, then y £ x. Thus, R is a
asymmetric relation on Z.

Similarly, if suppose x is related to y and y is also related to z, that is, we have
x < yand y < x, which is not possible, hence the hypothesis of antisymmetric relation
can not hold, that is, R is vacuously antisymmetric relation.

Check, whether R is symmetric?

2.4.3 Transitive Relation

Definition 2.10. A relation R on a set A is said to be transitive if whenever (a,b) € R
and (b, c) € R, then we have (a,c) € R.

Note. If such a, b, and ¢ do not exist, then R is transitive vacuously.

Example 2.16. Consider the Example 2.15, that is, R is the relation less than. Then
whenever (a,b) € R and (b,c¢) € R, that is, a < b and b < ¢ then by transitivity, we
have a < ¢, that is, (a,c) € R. Hence R is a transitive relation.

Example 2.17. Let us consider A = {1,2,3,4} and let

R= {(17 2)7 (173)7 (473)}

Then, there does not exist no triplets a,b,c € A such that (a,b) € R and (b,¢) € R.
Thus, R is transitive vacuously.

We can summarize the reflexive, symmetric and transitive relations as follows:
Result 2.1. Let R be a relation on a set A. Then R is

1. reflexive if a € R(a) for all a € A;

2. symmetry if a € R(b) if and only if b € R(a);

3. transitive if whenever b € R(a) and ¢ € R(b), then ¢ € R(a).

In-text Exercise 2.2. 1. Let A = {1,2,3,4}. Check whether the relation is reflex-
ive, symmetric, anti-symmetric or transitive.
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(CL) R= {(1’1)’(272)7(373)};
(b) B =1{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)};
(c) R={(1,3),(4,2),(2,4),(3,1),(2,2)}

2. Check whether the given relation is reflexive, symmetric, anti-symmetric or
transitive.

Y
Y

(a) A=7Z;aRb if and only if a + b is even;
(b)) A=TR; aRb if and only if a® + b* = 1;
(¢) A=TR? (a,b)R(c,d) if and only if a = c.

2.5 Equivalence Relation

In this section, we discuss about an important class of relations known as equivalence
relation. We will learn that every equivalence relation forms a partition of the set.

Definition 2.11. A relation R defined on a non-empty set A is called an equivalence
relation if it is a reflexive, symmetric and transitive.

Now, we will discuss some examples of equivalence relation.

Example 2.18. Let A be the set of all the lines on a plane and let R be a relation on
A define as [y is related to [, if and only if ; is parallel to Is.
Then,

1. Every line [ is parallel to itself, therefore (I,l) € R for all [ € A. Thus, R is
reflexive.

2. Let (l1,15) € R, that is, [y is parallel to Iy, which means [, is parallel to [;. Hence
(I2,11) € R and thus R is a symmetric relation.

3. Let (I1,12) € R and (ls,13) € R, that is, [; is parallel to I and I, is parallel to
l3. Thus, [y is parallel to I3, (I1,03) € R. Hence, R is transitive.

Therefore, R is an equivalence relation.
Example 2.19. Let A = {1,2,3,4} and let
R = {(1’ 1)? (17 2)7 (27 2)’ (374)7 (37 3)7 (4a 3)7 (47 4)}

Here, one can easily observe that (a,a) € R for all a € A. Therefore R is reflexive.
Even R is transitive as well (Check yourself!). But R is not symmetric as (1,2) € R
but (2,1) ¢ R. Thus, R is not an equivalence relation.

Example 2.20. Let A = N, the set of all natural numbers, and let R be defined by
(a,b) € R if and only if a > b.

Is R an equivalence relation?
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Solution. Since a £ a. Thus, R is not reflexive. Also, if a < b, it does not follow that
b < a. Thus, R is neither symmetric too.

But, if have a < b and b < ¢ which imply that a < ¢. Thus, R is transitive
relation. Hence, R is not an equivalence relation.

In the above example, if we replace the relation < by <, then is R an equivalence
relation?

Example 2.21. Let A = Z, the set of all integers and let
R ={(a,b) € Ax A|a = b(mod(n))}
for some n € Z*. Then show that R is an equivalence relation.

Solution. Here

1. We have, for all @ € A, (a —a) = 0 is divided by n. Thus, (a,a) € R for all
a € A. Hence, R is reflexive.

2. Let (a,b) € R, that is (a — b) is divided by n. Therefore, we have (b — a) =
—(b — a) is also divided by n, R is symmetric.

3. Let (a,b) € R and (b,¢) € R, that is, (a —b) and (b — ¢) both are divided by n.
Hence, (a —c¢) = (a—b) + (b— ¢) is divisible by n. Thus, R is transitive as well.

Therefore, R is an equivalence relation.

Now, we define an important aspect of set theory, known as partition of a set.
Later, we will show that every equivalence relation generates partition of the set and
vice-verse.

Definition 2.12. A collection of pairwise disjoint subsets of a given set is called parti-
tion of the set, where the union of the subsets must equal to the entire set.

Let A be a given set. Then a collection {B; |7 € A} forms partition of A, if

1.

ieA
2. Bi(B; =0 for all i # j.
Also, the sets in partition are either disjoint or identical.

Example 2.22. Let us consider A = {a,b,c¢,d, e, f}. Then one possible partition of A
is

{a,c e} {b,d}, {f}
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In the Example 2.22; the collection {a, e} and {b, ¢, d, f} also forms another par-
tition of A. Thus, one can conclude that partition of a set is not unique.

In the next result, we will show that every partition of a set A generates an
equivalence relation. Later, we will show that this result is other way around as well.

Here, we recall that the sets in partition of a set are either disjoint or identical.
Also, they are known as blocks of P.

Theorem 2.3. Let P be a partition of a given non-empty set A. We define a relation
R on A as follows:

(a,b) € R if and only if a and b are members of the same block.

Then R is an equivalence relation on A.

Proof. 1. Let a € A and let a be in some block say B,. Then obviously a € B,.
Therefore, (a,a) € R.

2. Let (a,b) € R, that is a and b both are in the same block, then b and a also lie
in the same block. Thus, R is symmetric.

3. The relation R is transitive as whenever a and b are in same block, say A,
and b and c¢ are in same block say A;. Thus, we have b € A; () Az, that is,
A1 (N As # ). Since, blocks are either disjoint or identical. Therefore, we have
A; = A,. Hence, we have a,b,c € A; = A,. That is, a and ¢ both are in same
block. Thus, we have whenever (a,b) € R and (b, c) € R. Hence (a,c) € R.

Therefore, R is an equivalence relation. O

Now, we will demonstrate the above result, with the help of an example.

Example 2.23. Let A = {1,2,3,4} and consider a partition

P={{1,2},{3,4}}
Find the equivalence relation R on A generated by P.

Solution. Here, we have
P={{1,2},{3,4}}

Then, by the Theorem 2.3, one can construct an equivalence relation as follow:
Two elements in A are related to each others, if they lie in the same block. Then,
we have

R={(1,1),(1,2),(2,1),(2,2),(3,3),(3,4), (4,3), (4,4)}

Then, one verify that R is an equivalence relation generated by partition P.

In the following, we will demonstrate that every partition of a set generates an
equivalence relation. We will do this, with the help of an example:

Example 2.24. Let A = {1,2,3,4,5,6,7} be a non-empty set and let

P ={{1,2,5},{3,4},{6,7}}
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be a partition of A. Here, the blocks of P are {1,2,5},{3,4} and {6, 7}.
Consider A; = {1,2,5} and 1 € A;. For the equivalence relation, each element of A,
must be related to every other element in A;. That is, we have

Ry =A{(1,1),(1,2),(1,5),(2,1),(2,2),(2,5),(5,1),(5,2), (5,5)}

Repeat the same for the blocks {3,4} and {6, 7}. Thus, we have

RQ - {(3’ 3)7 (37 4)7 (47 3>’ (47 4)}

and
Ry = {(67 6)7 (67 7)’ (7, 6)? (77 7)}
Hence, the equivalence relation R generated by the partition P is R = Ry |J Rz |J Rs.

Thus, we can say that the partition P consist of
{R(a)|a € A}

In words,we can say that P consists of all distinct R-relative sets which are gen-
erated by the elements of A.

Note. For a given partition of A, one can simply construct an equivalence relation on

A.

In then following results, we will show that all the equivalence relations on a given
non-empty set A can be produced from partitions.

Theorem 2.4. Let R be an equivalence relation on a given non-empty set A and let
a,b € A. Then, we have

(a,b) € R if and only if R(a) = R(b)

That is, for an equivalence relation, two elements are related to each other if and
only if their R-relative sets coincide.

Proof. Let R be an equivalence relation on A and let a,b € A such that R(a) = R(b).
Then, we have to show that (a,b) € R, that is, a is related to b.

Since R is reflexive, therefore (b, b) € R, that is, b € R(b). By the given hypothesis,
we have R(a) = R(b), that is, b € R(a). Thus, we have (a,b) € R.

Conversely, Let (a,b) € R. Then, we have to show that R(a) = R(b), which is
same as proving the following two results:

1. R(a) C R(b);

2. R(b) C R(a).
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We have (a,b) € R, that is, b € R(a) and as R is a symmetric relation thus, we have,
a € R(b).

Now, let z € R(a) which implies (a,x) € R. Since, R is an equivalence relation,
thus transitive. Hence, we (b,x) € R, that is, x € R(b). Therefore, we have R(a) C
R(b).

Similarly, let y € R(b), that is (b,y) € R. Also, we have (a,b) € R. So, by
transitivity, we have (a,y) € R. Hence, we have R(b) C R(a). Therefore, we have
R(a) = R(b). O

Now, we will provide our main result which connect the partition of a set with its
corresponding equivalence relation.

Theorem 2.5. Let R be an equivalence relation on a given non-empty set A and let P
be the collection of all distinct relative sets R(a) for a € A. Then, P is a partition of
A. Also, R is the equivalence relation generated by P.

Before, providing the proof, we recall the definition of a partition of a set A. We
say P is a partition of a set A, if

1. Every element of A belongs to some relative sets;

2. Every two pair of partition are either identical or disjoint

that is, whenever R(a) and R(b) are not identical then
R(a)(R(b) =0

Proof. Since R is an equivalence relation on A, therefore R is reflexive. Thus, we
have a € R(a) for all a € A. Hence, every element of A is a part of some R(a).

Let R(a)( R(b) # 0. Now, we have to show that R(a) = R(D).

Let there exist some ¢ € R(a)() R(b), that is, (a,c) € R and (b,c) € R. Since,
R is symmetric, thus, we have (¢,b) € R. By the transitivity of R, one can say that
(a,b) € R. Hence, by the Theorem 2.4, we have R(a) = R(b).

Now, we will show that R is the equivalence relation generated by this partition
P. Again, from the Theorem 2.4, we have (a,b) € R if and only if a and b belong
to the same block of partition P. Therefore, partition P generated the relation R,
which is an equivalence relation. Hence the result. O

Remark. Let R be an equivalence relation on A, then the R-relative sets, R(a) are
called equivalence classes of R and they are denoted by [a].
The partition P constructed in Theorem 2.5 are nothing but the collection of equiv-

alence classes of R.

Definition 2.13. Partition of a set A, generated by an equivalence relation R is called
quotient set of A and is denoted by A/R.
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Example 2.25. Let A = {1,2,3,4} be a set and let
R={(1,1),(1,2),(2,1),(2,2),(3,4),(4,3).(3,3), (4,4)}

Then, one can easily verify that R is an equivalence relation on A. Also, we have
R(1) ={1,2} = R(2) and R(3) = {3,4} = R(4). Hence, the quotient set

A/R = {{17 2}7 {37 4}} .

Example 2.26. Let A = Z be the set of all integers and let R be a relation on A,
define as
(a,b) € R if and only if a — b is divisible by 2

Then, one can easily verify that R is an equivalence relation on A and its equiv-
alence classes are

R(0) = {0, £2, +4, +6, ...}
R(1)={..,—7,-5,-3,-1,1,3,5,7,.. .}

Since R(0) U R(1) = A and R(0) N R(1) = (). Thus, we have A/R consists of R(0),
that is set of all even integers and R(1), set of all odd integers only.

Working Rule for Determining partitions A/ R for a finite set A Let P be a partition
of A and let R be the corresponding equivalence relation generated by the partition

P.

step 1 Let A; be a member of P and let a € A;. Then from the above example, one
can observe that A; consists of all elements x € A which are related to a, that
is, (a,x) € R.

Therefore, we have R(a) C A;. Also, we have A; C R(a). Thus, we have
Al = R(a)

step 2 Let there exist some b(# a) € A and b € A,, then by the case (1), we have

step 3 Repeat the step (3), until all the elements of A are excluded.

2.6  Equivalence Classes

Let R be an equivalence relation defined on a non-empty set A. For any a € A, we
define the equivalence class of a to be the set

{be AlaRb)

We denote the equivalence class of a by [a].
Clearly, for each a € A, we have an equivalence class. In the following, we provide
some properties of equivalence classes:
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1. Every equivalence class is non-empty.
This is because of the fact that aRa.

2. Two equivalence classes are either same or disjoint.
For a,b € A, if we are [a] = [b], then we are done.
Let if possible, for a,b € A and [a] ([b] # 0.

then there exists some x € [a] and = € [b]. Therefore, we have
aRx and aRb

As R is symmetric, thus, we have a Rx and zRb. Thus, by transitivity of R, we
have aRb. Hence b € [a].

Let t € [a], therefore aRt also, we have aRb as well. Hence, by symmetric and
transitivity, we have bRa and aRt, thus bRt. That is, t € [b]. Hence, we have
[a] < [0].

Similarly, we have [b] C [a]. Thus, [a] = [b].

3. Union of equivalence classes equals to the set itself.
Since a € [a] for all a € A. Therefore

A=

acA
In the next example, we demonstrate the following:
Example 2.27. Let R be a relation defined on the set of integers Z such that
aRb if and only if a =bor a = —b

Then, R is an equivalence relation (Try yourself!).
Then, for any a € Z, the equivalence class of a is given by

la] = {b€ Z|aRb}
= {a,—a}
Example 2.28. Let R be a relation defined on the set of integers Z such that aRb, if
a = b(mod4)
Then, the equivalence class of

[0] ={a|a = 0(mod4)}
={a|a is divisible by 4}

Similarly, we have

[1] ={a|a = 1(mod4)}
={a|a — 1 is divisible by 4}
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Hence, we have
0] ={...,—8,-4,0,4,8,...}
] ={...,-7,-3,1,5,9,...}
In general, equivalence class of a is given by
[a] ={b|a = b(mod4)}
={b|b — aa is divisible by 4}
={...,a—8,a—4,a,a+4,a+38,...}
In-text Exercise 2.3. 1. Determine whether the given relation R on a set A is an

equivalence relation.

() A=1{1,2,3,4}
R= {<17 1)7 (27 1)7 (27 2)7 (373)7 (4’4)a (473)};

(by A=1{1,2,3,4}
R={(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(2,3),(3,3), (4,4),(3,2)}

2. Let A be the set of all the students admitted in SOL, then aRb if and only if a
and b have the same last name. Is, R an equivalence relation.

3. Let {{1,3,5},{2,4}} be a partition of the set A = {1,2,3,4,5}. Find the
corresponding equivalence relation on A.

4. Let S ={1,2,3,4,5} and A =S x S. let us define the following relation R on
A:
(a,b)R(c,d) if and only if ac = bd

Show that R is an equivalence relation.

2.7 Partially Ordered Relations

In the previous section, we studied about the equivalence relation. We also studied
that every equivalence relation generates equivalence classes which forms a partition
of the underlying set A. Even, every partition of A generate an equivalence relation
on A as well. In this section, we will discuss another important relation, known as
Partial ordered relation on P. We will study various application of the same.

Definition 2.14. A relation R on a given non-empty set P is called a partial order
relation if R is reflexive, antisymmetric and transitive.

The set P together with the partial order R is called a partially ordered set and
it is denoted by (P, R). Sometimes, it is also known as poset.

Example 2.29. Let P(A) be the power set of A. Then, we define a relation R on P(A)
as
Xisrelatedto Y if X CY

where X,Y € P(A). Then, we have



A.C.-22.11.2022
Appendix-112

2.7. PARTTALLY ORDERED RELATIONS 45

1. As X C X for all X € P(A). Therefore, R is reflexive.

2. Let (X,Y) € Rand (Y,X) € R, that is, X C Y and Y C X. Therefore, we
have X =Y. Hence R is antisymmetric.

3. Let (X,Y) € R, (Y,Z) € R, that is, X C Y and Y C Z. Then, we have
(X,Z) € R. Hence R is transitive.

Therefore R is a partial order relation.

Example 2.30. Let P be the set of all integers and the usual < (less than or equal to)
relation is a partial order relation on P. As, we have

1. for every a € P, we have a < a, that is (a,a) € R. Thus, R is reflexive.

2. Let (a,b) € R and (b,a) € R. That is, we have ¢ < b and b < a. Then, we have
a =b. Hence, R is antisymmetric.

3. Similarly, one can prove that R is transitive.
Thus R is a partial order relation.

Example 2.31. Let M be the collection of all the equivalence relation on a set P.
Then, M with the relation C, known as “partial order of set containment” forms a
partial order relation.

That is, let R and S be two equivalence relation on P, then we define the relation
“C” on M as

R C S if and only if (z,y) € R implies (z,y) € S for all z,y € P

Example 2.32. Check whether the relation < on the set of natural numbers, a partial
order relation.

Solution. As a £ a for a € P. Thus, the given relation is not reflexive. Hence the
given relation is neither partial order nor equivalence.

Definition 2.15. Let R be a relation define on a set A. Then the inverse relation of
R, denoted by R™! is define as

R'={(z,y) € Ax A|(y,r) € R}

Result 2.2. Let P be a non-empty set and R be a partial order relation on P. Then
the inverse relation, R~! is also a partial order relation on P.

Solution. Let R be a partial order relation on P. Then

1. R is reflexive, therefore, we have (a,a) € R for all @ € P. Hence, we have
(a,a) € R7! for all @ € P. Therefore, R~ is reflexive.

2. Let (a,b) € R and (b,a) € R™*. Thus, by definition of inverse relation, we
have (b,a) € R and (b,a) € R. Since, R is an antisymmetric relation. Hence,
we have a = b. Therefore, R~! is an antisymmetric relation.
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3. Let (z,y) € R7! and (y,z) € R~!. That is, we have (y,r) € R and (z,y) € R.
Hence, by transitivity of R, we have (z,x) € R. Thus, (z,2) € R™!. Hence R™!
is transitive.

Therefore, R~! is a partial order relation.
Note. The partially ordered set (P, R™!) is called the dual of the poset (P, R).

Since, we have (11%*1)_1 = R. Thus, the dual of the dual is nothing but the same
relation R.

The most common partial order relations are < and > defined on Z. Therefore,
it a common practice to mention a partial order on a set A with the symbol < or
with > for R. Thus the reader may see the symbol < used for many different partial
orders on different sets. To distinguish various partial orders from one another, we
may also use different symbols such as <;, <, >, >’ and so on.

Remark. Let (A, <) is a partially ordered set, then we will use (A4, >) for the dual
poset of (A, <).
Similarly, the dual of poset (A, <;) will be denoted by (A4, >1)

Definition 2.16. Let (A, <) be a partially ordered set, then we say a,b € A are com-
parable if either
a<borb<a

Example 2.33. Let A = N, be the set of all natural numbers and let R be a relation
define on A such that
aRb if and only if a | b

Then, one can easily verify that

1. for all @ € A, we have a is divisible by a which implies (a,a) € R. Therefore, R
is reflexive.

2. Let (a,b) € R and (b,a) € R, that is, a is divisible by b and b is divisible by a.
Hence, we have a = b, the relation R is antisymmetric.

3. Let (a,b) € R and (b,c¢) € R, that is, a is divisible by b and b is divisible by
¢, then we have a is divisible by ¢. Thus, (a,c) € R. Hence R is a transitive
relation.

Therefore, R is a partial order relation.

Here, one can observe that 314 and 4 1 3, that neither 3 is divisible by 4 nor 4 is
divisible by 3. Hence, 3 and 4 are not comparable. But elements 2,4 are comparable
as 2 | 4.

Remark. Thus the word “partial” in partially ordered set (A, <) is used because of
the fact that in A some elements are comparable and some may not be comparable.

What if, in a set, every elements are comparable to each other?
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Definition 2.17. Let R be a partial order relation on a given set A, where every pair
of elements is comparable, that is, for all a,b € A, we have either a < b or b < a, then
the set A is called linearly ordered set.

A linearly ordered set A is also known as totally ordered set or chain.

Example 2.34. Consider the set P = Z be the set of integers then the usual less than
or equal to relation < is a partial order on P. Then, one can easily observe that for
every pair a,b € P, we have either a < b or b < a. Thus, (P, <) is a chain.

In the next result, we will show how to construct new partial order relations from
the existing one.

Theorem 2.6. Let (A, <) and (B, <) be two partially order sets. Then (A x B, <) is
a partial order set, with the partial order < defined as

(a,b) < (d',b) if and only if a < a’ and b < ¥’

Proof. Here, we have to show that the partial order < on the product space A x B
is a partial order relation, that is, reflexive, antisymmetric and transitive.

1. Let (a,b) € A x B, that is, a € Aand b € B. As, (A, <) and (B, <) both are
reflexive, thus, we have a < a and b < b. Hence, we have

(a,b) < (a,b)
for all a € A and b € B. Thus, < is reflexive in A x B.

2. Now let (a,b) < (a/,V') and (d’,V') < (a,b) for some a,a’ € A and b,V € B.
Then,, we have

a<d andad <a alsob<V and ¥ <b

Since (A, <) and (B, <) both are antisymmetric (being partial order), thus,
we have @ = o’ and b = /. Hence, we have (a,b) = (a/,0'). Therefore, < is
antisymmetric on A X B.

3. Let
(a,b) < (a',b') and (da',b") < (a”, V")

for some a,a’,a” € A and b,V',b” € B. Then we have
a<d and d <d”

Therefore, we have a < a”, by the transitivity of the poset (A, <). Similarly,
we have
b<?V and b <b”

Hence, we have b < b
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Thus, we have

(CL7 b) S (CLH, b//)
Therefore, < is a partial order on A x B and hence A x B is a partial order set. [

Remark. The partial order < defined on the Cartesian product A x B is also called
the product partial order.

In-text Exercise 2.4. 1. Determine whether the relation R is a partial order on the
set p;

(a) A=Z and aRb if and only if a = 20b;
(b)) A =7 and aRbD if and only if b? divides a;
(¢) A=TR and aRb if and only if a < b;

2. Let A be the collection of all the lines and R be a relation define on A as
1Rl if and only if [; is parallel to I,

Then, check whether R is a partial order relation.

3. Let A be the collection of all the candidates applying for the B. Sc (H) Mathe-
matics and let R be a relation define on A such that

aRb if and only if a is a friend of b

2.8  Summary

In this chapter, we have covered the following:

1. A relation R from A to B is a subset of A x B and whenever (a,b) € R, then
we say a is related to b.

2. Let R be a relation from A to B and let z € A. Then, we have

R(z) ={y e Al (2,y) € R}

3. A relation R on a set A is

a) reflexive if aRa for all a € A;

(a)
(b) irreflexive if aRa for every a € A;
()
(d)
(e)

(f) transitive if whenever aRb and bRc then aRc;

symmetric if whenever aRb, then we have bRa;
asymmetric if whenever aRb then bRa;

antisymmetric if whenever aRb and bRa, then a = b;
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4. A relation R, which is reflexive, symmetric and transitive is called equivalence
relation

5. Every equivalence relation generates equivalence classes and vice versa;

6. For an equivalence relation R on a set A, we have

R(a) = R(b) if and only if (a,b) € R

7. A relation R, which is reflexive, anti-symmetric and transitive is called partial
ordered set.

2.9 Self-Assessment Exercise

1. Give an example of a relation which is

(a) Reflexive, not symmetric and not transitive;
(b) Not reflexive but transitive;

(¢) neither reflexive nor transitive.
2. Let R be a relation on the set of all integers Z define as
aRb if and only if a — b is an even integers

Show that R is an equivalence relation.

3. Let R be a relation from A to B. Then for subsets A;, Ay C A, show that

R(A; N Ay) = R(A;) N R(Ay) if and only if R(a) N R(b) = @ for any distinct
a,be A

4. Check, whether “greater than” relation > is a partial order relation on the set
of real numbers.

5. Let A = R?. Then show that the relation R on A define as
(a,b)R(c,d) if and only if a® + b* = ¢ + d*

is an equivalence relation.

2.10 Solutions to In-text Exercises

In-text Exercise 2. 1 1 (a) Dom(R) = {a,b,c,d} and Ran(R) = {1,2}

) )
(b) Dom(R) = {1,2,3,4} and Ran(R) = {1,4,6,8}
(¢) Dom(R)={1,2,3,4} and Ran(R) ={1,4,6,9}
(d) Dom(R) =1{1,2,3,4,8} and Ran(R) = {4,6,9}
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Here Dom(R) = R, set of all real numbers and Ran(R) = {xr € R | = =

(6 —2a)/3, for a inR}

(a) R(4) ={2,4}

(b) R(3) = {3}

(a) R is symmetric, anti-symmetric as well as transitive relation, it is not
reflexive, as (4,4) ¢ R.

(b) R is neither reflexive as (1,1) ¢ R, it is nor symmetric as well as
(1,2) € Rbut (2,1) ¢ R.

(¢) R is neither reflexive, symmetric, anti-symmetric nor transitive.

(a) R is an equivalence relation but not anti-symmetric as we have (1, 3) €
R and (3,1) € R but 1 # 3.

(b) Here, R is neither reflexive, anti-symmetric nor transitive. But R is a
symmetric relation.

(¢) R is an equivalence relation but not anti-symmetric as (1,2)R(1,3)
and (1,3)R(1,2) but (1,2) # (1,3)

(a) R is not an equivalence relation as R is not symmetric;
(b) R is an equivalence relation.
Here R is an equivalence relation but R is not anti-symmetric;

Here the relation R is
R={(1,1),(1,3),(1,5),(3,1),(3,3),(3,5), (5, 1), (5,3),

(5,5),(2,2),(2,4), (4,2), (4,4)}
Here R is reflexive as (a,b)R(a,b) for all (a,b) € A. Also, R is symmetric

and transitive as well.

(a) R is not reflexive as 1K1, hence R is not a partial order relation.
(b) Here, R is not reflexive as 2R2, hence R is not a partial order relation.
(c) Here R is a partial order relation.

R is not an anti-symmetric relation. Thus, R is not a partial order relation.

Here R is neither anti-symmetric nor transitive. Hence, R is not a partial
order relation.
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3.1

After going through this chapter, we should be able to :

Learning Objectives

define functions from the set A to B;

define and study the composition and algebra of two functions;

understand different types of functions, like- one-one, onto, everywhere defined

and bijective functions;

study the inverse of function, whenever it exists and their respective properties;

o1
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o introduce and study the poset with the help of Hasse diagrams;

o study Lattices and its algebraic structure.

3.2 Introduction

In this chapter, our focus will be on a special type of relation known as function.
Functions play very important role in mathematics, computer science other diverse
field of education. Later, we will also revisit the partial order set and its various
properties. Finally, we will discuss some basic notion for lattices, which will be used
frequently in later chapters.

3.3  Functions

In this section, we will define the notion of a function, which is a special type of
relation. Later on, we study some basic properties and types of functions. We will
demonstrate all these properties with the help of various examples.

Definition 3.1. Let A and B be two non-empty sets. Then a function f from A to B
is a relation from A to B satisfying the following properties

1. for all a € Dom(f), f(a), the f-relative set of a is non-empty.
That is, Dom(f) = A;

2. For every a €Dom(f), f-relative set of a contains exactly one element of B.
That is, whenever a; = ag, we have f(a1) = f(az).

Remark. Whenever a ¢ Dom(f), then f(a) = 0.

For the simplicity, we mention the relation f with the set of pairs

{(a, f(a)) |a € Dom(f)}

Functions are also known as mappings or transformations because, here every element
of A is mapped to a unique element of B. The element b = f(a) is referred as image
of a under f and the element a is called pre image of b under f.

Example 3.1. Let A = {1,2,3,4} and B = {a,b,c,d} and let us define a relation f

from A to B as
f= {(1,@),(2,@),(3, b)7(470)}

Here, we have

f(1) =£(2)
f(3)
f(4)

I
o o 2

Here, each a € A is assign to a single value of B, therefore f is a function.
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Again, consider a relation define from A = {1,2,3,4} and B = {a,b, ¢,d} defined
as

f= {(1,0&), (2761)’ (3,@), (4,(1), (17b)}

Here, we have f(1) = a as well as f(1) = b, therefore, f(1) = {a, b}, which is not a
singleton set. Hence, f is not a function.

In the Example 3.1, the domain of f is {1,2,3,4} and Range of f = {a,b,c}. Here,
one can notice that, for a function, Ran(f) may not be equal to co-domain of f.

Example 3.2. Let A = {1,2,3,4} and B = {a,b,¢,d}. Consider the relation

R= {(17 a), (2’ b)v (3’ C)}
Then, again R is not a function as R(4) = 0.

Example 3.3. Let A = R be the set of all real numbers, and let p(z) be polynomial
with real coefficients, that is

p(z) =ag+ a1z + ... + a,z,.

Then p may be realized as a relation on R, define as

for each r € R, we have p(r), by putting x = r in p(z).
Since all relative sets p(r) are well defined and for each r € R, p(r) generates a unique
value in R. Thus, the relation p is a function from R to R.

Example 3.4. Let A = N, be the set of all natural numbers and let B, be the set of
all even integers. Then, we can define a function f: A — B as

f(n)=2n foralln € A

One can easily confirm that f is a function defined by giving a formula for the values

f(n).
Example 3.5. Let A =Z, be the set of all integers and let B ={0,1}. Let f: A — B

define as
0 if x is even
f@)—{ 1 if 2 is odd

Then f is a function because for each x € A, f(x) is either 0 or 1, singleton.
Now, we define a special type of function and composition of two function.

Definition 3.2. Let A be a non-empty set. Then the identity function I4 on A is
defined as

Ij(a) =a forallae A

Whenever A; C A, then we have 14(A4;) = A;.
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Definition 3.3. Let f: A — B and g: B — C be two functions. Then, the composition
of f and g, is a relation from A to C, define as

gof:A—=C

as, a € Dom(go f). Then
go fla)=g(f(a))

Since, f and g both are functions, then for each a € A, f(a) is a singleton element,
that is, there exists some b € B such that f(a) = b. Therefore, we have g(f(a)) = g(b).
Since, ¢ is a function, thus, for b € B, there exists some ¢ € C, such that

g(b) =c

Thus, we have, for each a € A, there exists some ¢ € C such that g o f(a) = ¢, that
is, g o f(a) contains just one element of C'. Hence, go f is a well define function form
Ato C.

Figure 3.1: Composition of two functions

Example 3.6. Let A = C' = N be the set of all natural numbers, B = [E, be the set of
all even natural numbers. Let us define two functions f: A — B and g: B — C as

flz) =2x

g(x) =x/2
Then, find go f

Solution. Consider

go f(x) =g(f(r)) =g(2r) = (2v)/2 =2

Hence, we have go f(z) = x.
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3.4 Bijective Functions

In the following, we define some special class of functions, which are onto function
and one-one function.

Definition 3.4. Let f be a function define from a set A to B. Then, we say
1. fis onto if Ran(f) = B;

2. f is one-one if for
f(a) = f(b) imples a = b

3. f is everywhere defined, if Dom(f) = A.

Example 3.7. Let us consider A = {1,2,3,4} and B = {a, b, ¢, d}, and let us define a
function f from A to B as

f=A{1,0),(2,a),(3,¢), (4,d)}

Then the function f is not onto, as Ran(f) = {a,c,d} # B. Also, we have f(1) =
f(2) = a, but 1 # 2. Hence, f is neither one-one nor onto.

Example 3.8. Let us consider A = B = Z, be the set of all integers and let f: A — B
be a function defined as

fla)=a+1 forall a € A.

Then

1. f is one-one:
Consider

2. f is onto:

For all b € B, there always exists some a =b— 1 € A, such that
fa)=fb—1)=(b—1)+ 1=}
Hence, Ran(f) = B, thus, f is onto.

Is f everywhere defined?
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3.4.1 Invertible Function

Definition 3.5. A function f: A — B is said to be invertible if its inverse relation f~!,
is also a function.

Example 3.9. Consider a function f defined from A = {1,2,3} to B = {a, b, c} as
f=1{1,0),(2,0a),(3,a)}
Then, f is a function, which is everywhere defined. But
f=Ala;1),(a,2), (a,3)}
is not a function (Why?). Therefore, f is not invertible.

In the next result, we will provide a necessary and sufficient condition for a function
to be invertible.

Theorem 3.1. Let f: A — B be a function. Then

1. Then f~!is a function from B to A if and only if f is one-one. Also, If f~1 is
a function, then

2. the function f~! is one-one.

3. f~1is everywhere defined if and only if f is onto. Also,

4. f~1is onto if and only if f is everywhere defined.
Proof. 1. Here, we have to prove

(a) If f~1is a function then f is one-one, that is,
fl@)=fly) =z =y

(b) If f is one-one then f~! is a function.

Let if possible f~! is not a function. Therefore, for some y € B, f~(y) is not
singleton, that is, there exists x1, x5 € A such that

f(x1) =y = f(z2)
But, we have x; # x9. Therefore f is not one-one.

Conversely, let f is not one-one, therefore, there exists x; # x5 € A such that
f(x1) = f(x2). Let f(z1) =y for some y € B. Hence, we have 1,15 € f~!(y),
that is, f~(y) is not singleton. Thus, f~! is not a function. Hence the proof.

2. Here, we have given then f~! is a function and we have to show that f~! is also
one-one.

Since, f~1 is a function, thus (f1)~' = f is also a function. Thus, by case (1),
we have f~! is one-one.
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3. Let f is a function from A to B, then a function f is onto if Ran(f) = B. Also,
f is everywhere defined if Dom(f) = A. Also, we have

Dom(f~") = Ran(§)

Thus, f~! is everywhere defined if and only if Dom(f~') = B. Thus, we have
B = Dom(f~') = Ran(f). Hence, we have Ran(f) = B. Therefore f is onto.
Hence, we have f~! is everywhere defined if and only if f is onto.

4. Likewise in case (3), We have Ran(f™') = DOm(f) and since f is defined
everywhere, thus, we have Dom(f) = A. Therefore A = Ran(f~!). Hence, f is
defined everywhere if and only if f~! is onto.

[]

Thus, from the above theorem, one can conclude that whenever f is one-one and
onto then f~!is also one-one and onto and vice-versa. That is, we have

fla)=bea=f"(b)

Example 3.10. Let A = B = R be the set of all real numbers and let f: A — B be a
function defined as

f(x) = ||

Is f invertible?

Solution. To check, f is invertible, we have to check f is one-one. Here 2 # —2 € R.

But f(2) = f(~2) = 2.

Hence, one can conclude that f is not one-one. Thus, f is not invertible.

In the following, we will notice some results concerning the composition of func-
tions.

Theorem 3.2. Let f: A — B be a function. Then
L Igof=F;
2. f o [A = f

Also, if f is one-one and onto then,
3. flof=14
4. foft=1Ip.

Proof. 1. Consider

(Ig o f)(a) = I5(f(a))
= f(a)

for all @ € Dom(f) C A. Therefore, we have Igo f = f
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2. Likewise case (1), we have
(fola)(a) = f(Ia(a))
= f(a)
for all a € Dom(f) C A. Therefore, we have foly = f

Now, suppose that f is one-one and onto function from A to B. Then, from
Theorem 3.1, we have the solution f(a) = b is equivalent to the equation a =
f74(b). Since f and f~! both are defined everywhere and onto, thus we have

f(f7H ) =band f(f(a) =a
forae Aand b € B.

3. For all a € A, consider

Is(a) =a
= 71 (f(a))
= (o f)(a)

Hence, we have I, = f~'o f.
4. For all b € B, we have

I5(b) =
= f(f71(0)
=(fof™)(®

Hence, we have Ip = fo f~1.

]

Theorem 3.3. 1. Let f: A— B and g: B — A be two functions such that go f =
I4and fog= Ig. Then f is one to one correspondence from A to B and g is
one to one correspondence from B to A. Also, f is the inverse of g and ¢ is the
inverse of f.

2. Let f: A— B and g: B — C be invertible. Then g o f is invertible. Also

(gof) ' =f oy
Proof. 1. We have
fog=1Ig and go f =14
that is, f o g(b) = f(g(b)) and go f(a) = g(f(a)) = a for alla € A and b € B.

Hence, we have Ran(f) = B and Ran(g) = A, thus f and g both are onto.
Also, consider
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Hence, we have z = g(f(x)) = ¢g(f(y)) = y. Hence f is one-one. Similarly, we
can show that ¢ is one to one. Thus, f and g both are invertible.

Also, f~!is defined everywhere, that is Dom(f~!) = Ran(f) = B. Therefore,
for b € B, we have

Hence, we have f~! = g. Also, f = (f~})7! = g~*. Since f and g are onto, f~!
and ¢g~! are onto. Thus, f and g are everywhere defined.

2. As f~! and ¢! are functions. Thus, the composition (go f)™ ' = floglis
also a function. Hence g o f is invertible.
O

Example 3.11. Let A = B = R, the set of all real numbers and let f: A — B be a
function defined as

fla) =2
and let g: B — A be defined as
g(x) = V.

Show that f is one-one and onto. Also, show that g = f~1.

Solution. Let € R and y = f(z) = 2®. Hence, we have z = ¢y = g(y).
Therefore, g(y) = g(f(2)) = (g o f)().

Thus, go f = I 4. Similarly, one can show that f o g = Iz. Thus, by the Theorem
3.3, both f and g are one-one and onto.

In the next result, we will show that over the finite sets, a function is one-one if
and only if its onto.

Theorem 3.4. Let A and B be two finite sets such that the number of elements in A
and B are same. Let f: A — B be defined everywhere. Then f is one-one if and only
if f is onto.

Proof. Let A = {ay,as,...,a,} and B = {by,b,...,b,} be two finite sets such that
both have same cardinality (finite), that is, the number of elements in the set A and
B are same. Let f be a function from A to B which is defined everywhere.
Then, suppose f is one-one, that is f(a1), f(az),..., f(a,) must map to n distinct
elements, that is, f(a1) # f(a,) of B. Since, the number of elements in B is also n,
hence f must be onto.

Similarly, suppose f is onto, then f(a;), f(as), ... f(a,) form the entire set B, thus
all must be distinct. Hence f is one-one. O
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Thus, one can say that if f is a function define from A to B, where A and B are
finite sets having same number of elements. Then, to prove that a function is bijective
it is sufficient to show that f is either one-one or onto.

In-text Exercise 3.1. 1. Let A = {a,b,c,d} and B = {1,2,3}. Check whether the

given relation R from A to B is a function.

(a) R={(a,1),(b,2),(c,1),(d;2)};

(b) B ={(a,1),(b,2),(a,2),(c,1),(d, 1)}
(¢) R={(a,1),(b1),(c,1),(d, 1)}

(d) R={(a,1),(a,2),(b1)}

2. Check whether the relation R from A to B is a function.
A = { the set of all students in SOL }
B = {x | =z is a 10 character number}
aRb if b is the PAN card number of person a.

3. Let A= B =C =R, be the set of real numbers and let f: A - B, g: B— C
be two functions defined by f(a) = a + 1 and g(b) = b* + 2. Evaluate

(a) go f(2);
(0) fog(2);
(c) go f(z);
(d) fog(x);
(e) fo f(x);
(f) gog(x)

4. Check the given function from A to B is one-one or onto or both or neither.

(a) A={a,b,c} and B ={z,y,z,w}
f=A(a,z),(b,y), (¢, 2)}

(b) A={a,b,c,d} and B ={z,y, 2}
f=A(a,z),(b,y), (¢, 2),(d,z)}

(c) A=B=R?
f((a,b)) = (a+b,a —b)

(d) A=B=R
flz) =22

5. Let f be a function from A to B. Find f~!

(a) A=B=R; f(z) = 2

(b) A=B= {1,2,3,4,5}
f= {(1v3)’(274)7(371)7<4’ 2)7(575)}
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6. Give a bijective function between the set of all natural numbers N and A =
{z | x is a positive even integer}

7. Let f be a function from A = {1,2,3,4} and B = {a,b,c,d}. Check, whether
f~1is a function.
(a) / ::{(1,@),(2,@),(3,6),(4,d)}
() f={(1,a),(2,¢),(3,b),(4,d)}

3.5 Lexicographic Order

In the last chapter, we studied about the partially ordered set and relations on a
set P. We also discussed about the product partial order, which was defined on the
Cartesian product A x B.

Here, we will define another useful partial order relation on A x B, generated by
the partial order relations on A and B, where (A, <) and (B, <) are posets.

Definition 3.6. Let (A, <) and (B, <) be two partial ordered sets. Then a partial
order relation on A x B is defined as

(a,b) < (a,0)ifa<d orifa=a and b <¥
This ordering is known as lexicographic or dictionary order.

In this type of ordering, the first coordinate of the tupple dominates except there
will be a tie. Also, one can easily verify that whenever (A, <) and (B, <) both are
linearly ordered sets, then the lexicographic order < on A x B is also a linear order.

Example 3.12. Let A = Z, be the set of integers with usual ordering. Then, one can
define the lexicographic order on Z? = 7Z x Z as vertical line in Z2.

y y

1
1
(@b)<(cd) 1
: (a,d)
(a,b) 1
: (a,b) < (a,d)

T@Q (a,b)
| x x

Figure 3.2: Dictionary Order

We can extend the lexicographic ordering to Cartesian product of finite family of
sets, that is, let Ay, Ao, ... A, are non-empty sets. Then consider

G:Al XAQX An
We define a lexicographic ordering over G as follows:

(a1,aq,...,a,) =2 (a},dy, ... a)) if and only if
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a; < aj or
_ o/ !/
ay = ay, and ag < al, or
a; = ay,as = ay and az < aj or
a) =ay,as =ay,...a,—1 =a,_; and a, < al,

Example 3.13. Let G = {a,b, ..., 2z} be the collection of all the alphabets in English,
with usual linearly ordered, thatis (e < b,0 <v¢,...y <z). Let G" = GxGx...G (n-
factors) can be identified with the set of all words having length n. Then lexicographic
order on G" has the property that if A; < A,, where Ay, Ay € G". Then A; would
precede A, in usual dictionary order listing.

Then, one can easily observe that Bat=< Cat, park= part.

One can extend the above example in general as follow:

Let S be a poset, then we can lexicographic order to S* (collection of all strings)
in the following way:

Let x,y € S*, where x = ajas...a, and y = biby...b,, are in S* with n < m,
then we say that x < y if (a1, as,...,a,) < (by,b2,...,b,) in S™ under lexicographic
ordering of S™.

Note. The elements of S™ and S* are of the same length n but with different notations,
that is, (a1, az,...,a,) € S™ and ajas...a, € S*.

The notations differ for some historical reasons and they are interchangeable de-
pending on context.

Example 3.14. Let S = {a,b, ..., z} be the collection of all alphabets with usual order.
Then S* is the set of all possible “words” of any length. Then, we have

help < helping
in S*, while

helper =< helpin
in S6.
Remark. Consider

help < helping

this type of order is also known as prefix order. That is, any word is greater than all
of its prefixes. The words occur in the dictionary also follow the prefix ordering.

Thus, the prefix order is a dictionary order but for the words of any finite length

3.6 Hasse Diagrams

In the following, we will introduce the concept of Hasse Diagrams of the partially
order set.
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Definition 3.7. A finite partially ordered set P can be represented by Hasse Diagram
where elements of P are represented by points in a plane and whenever zRy (z # y),
we draw the point y higher than x and connect with x via a line segment.

Non-comparable elements are not joined. That is, there will be no horizontal line
in the diagram.

Example 3.15. Let A = {1,2,3,5,7,11, 13} be a non-empty set. Consider the partial
order of divisibility on A, that is a < b if and only if a divides b. Then the following
partially ordered set A can be represented by the Hasse diagram given by the Figure
3.5. Here, every element of A is divisible by 1 and all are co-prime, thus we have 1 is

Figure 3.3: Hasse Diagram

at the lower level and all the other elements are in the upper level.

Remark. Let A be a partially ordered set and the element z is related to y and y is
related to z, then because of transitivity the element x is related to z. Then, in the
Hasse diagram, we do not have to connect x with z directly as they are connected via

Y.

Example 3.16. Let A = {1,2,3,4,6,12}. Consider the partial order of divisibility on
the set A. That is, Ry if and only if x divides y. Here, the elements in the partial
order is given by

R={(1,1),(1,2),(1,3),(1,4),(1,6),(1,12),(2,2),(2,4),(2,6), (2,12),
(3,3),(3,6),(3,12),(4,4), (4,12),(6,6), (6,12), (12,12) }
Hence, the Hasse diagram of the poset is represented by Figure 3.4.

Example 3.17. Let A = {a,b,c} and S = P(A), be the power set of A. Then P(A) is
a partially ordered set under the set inclusion relation “ C”.

P(A) ={0,{a}, {0}, {c},{a, b}, {a, c},{b,c}, {a, b, c}}

This poset is represented by the following Hasse diagram:
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12
[
4
2 3
1

Figure 3.4: Hasse Diagram

Figure 3.5: Hasse Diagram

Figure 3.6: Linearly Ordered Set
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Remark. Hasse diagram of a finite linearly ordered set is always in the from of straight
line as shown in the Figure 3.6.

That is, let A = {a,b,c,d,e, f} be a finite linearly ordered set such that a < b <
c... < f. Then, its Hasse diagram is always in the from of straight line as shown in
the Figure 3.6. In the next example, we will demonstrate the Hasse diagram of the
poset (A, <) and its dual (A >).

Example 3.18. Let (A, <) be a partially ordered set, where A = {a, b, ¢, d, e, f} having
some relation R, whose Hasse diagram is as follow:

Then, the dual poset (A, >) is represented by the Hasse diagram:

it

In-text Exercise 3.2. 1. Consider the partial order of divisibility on the set A, that
is, aRb if and only if a divides b. Draw the Hasse diagram of the given poset.
(a) A=1{1,2,3,5,6,10,15,30}
(b) A=1{2,4,8,16,32}
(c) A=1{1,2,3,5,7,11,13}
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2. Find the lexicographic ordering of the following;:

(a) (1,1,2),(1,2,1)
(b) (1,2,3,4),(2,3,4,5)
(c) Hi, Him.

3.7 Functions between Posets

In this section, we study the functions between two partially ordered sets. We will
define the notion of isomorphism for the same.

Definition 3.8. Let (A4, <) and (B, <’) be two posets. Then a map f: A — B is called

1. an isotone or order preserving if whenever x < y, we have f(z) <’ f(y) for all
r,y€e A

2. a poset homomorphism or order embedding if
xr <y if and only if f(x) <" f(y)
for all z,y € A;
3. a poset isomorphism if f is one-one, onto and poset homomorphism.

If f: A — Bisanisomorphism, then we say that (A, <) and (B, <) are isomorphic
posets.

For the cause of simplicity, we use the symbol < for both the relations < and <'.

In the next result, we will show that every poset homomorphism is always one-one.

Lemma 3.1. Every poset homomorphism is always one-one.

Proof. Let f: A — B be a poset homomorphism. Then, for x,y € A, let

f(@) = f(y)
= f(z) < f(y) and f(y) < f(x)
= r<yandy <z
= x = y. Therefore, f is one-one. O

Remark. Every one-one function need not be poset homomorphism.

Example 3.19. Consider a set A = {0, 1} with usual relation <. Then consider a map
f: A— A, defined as

f(0)=T1and f(1)=0

Then, the map f is one-one (its actually bijective). But f is not a poset homomor-
phism as, we have 0 < 1 but f(0) =1 £ 0= f(1).
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Example 3.20. Let A = Z™ be the set of all positive integers and let < be the usual
less than or equal to partial order on A. Let B be the collection of all positive even
numbers with < usual partial order. Then consider the function f: A — B defined
as

f(z) =2x

Then, f is an isomorphism between A and B.
Solution. Here, we have to show the following:

1. f is one-one.

Let f(x) = f(y), that is, we have 2x = 2y. Thus, we have z = y. Hence,
we have f is one-one. Also, we have Dom(f) = A, therefore, f is everywhere
defined.

2. f is onto.

Let ¢ € B, that is, ¢ = 2m for some m € Z*. Thus, we have f(m) = 2m = c.
Hence f is onto.

3. f is poset homomorphism.

Let z,y € A such that x < y. Therefore, we have 2z < 2y. Hence we have
f(z) < f(y). Similarly, we have whenever f(z) < f(y) implies that = < y.
Hence, we have

x <y if and only if f(z) < f(y)

Therefore, f is a poset isomorphism.

Let f: A — B be a poset isomorphism from the poset (A, <) to poset (B, <').

Let A’ be a subset of A and let f(A’) = B’ is the corresponding subset of B. Then,
we have the following:

Theorem 3.5. Suppose the elements of A’ have some property relating to other ele-
ments of A, and if this property is completely defined on <, then the elements of B’
must possess exactly the same property with respect to <’.

Consider the Hasse diagram in the Figure 3.7, defined on a poset (A, <), where
A={a,b,c,d}

Let f: A — B be a poset isomorphism. Then, from the Hasse diagram of A, we
can notice that a < z for all x € A. Thus, the image of a, that is, f(a) must be
related to all the elements of f(A), that is, f(a) <" x for all z € f(A).

Also, we have ¢ £ d and d £ ¢ in A. Thus, we have f(c) £ f(d) and f(d) £ f(c).
The pair of the kind ¢ and d is called incomparable in A.

Note. Let (A, <) and (B, <’) be two finite posets and let f: A — B be a bijective
function. Let H be any Hasse diagram of (A, <). Then, we have the following:
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Figure 3.7: Hasse Diagram
1. If f is a poset isomorphism and if we replace each label a of H with f(a), then
the resultant Hasse diagram will be the Hasse diagram for (B, <');

2. If H becomes a Hasse diagram for (B, <), whenever each label a is replaced by
f(a). Then f is poset isomorphism.

Thus, for finite posets, isomorphism means the same shape.

Example 3.21. Let A = {1, 2, 3,6} with the partial order relation < defined as a < b if
and only if a divides b. Let B = {a,b} and A’ = P(B) and let <’ be the set inclusion
partial order relation on A’. Let us define a function f: A — A’ as

fW) =0, f@2)=Aa}, fB)=A{b}, [(6)={ab}
then,

1. f is one-one and onto;

2. f is everywhere defined.

4 f(4) = {a,b}

3 1(3) = {0}

1 fl=0

Figure 3.8: Poset Isomorphism

Also, if we replace each label a € A of the Hasse diagram of A is replaced by f(a),
we will get the Hasse diagram for A’. Hence, f is a poset isomorphism.
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In-text Exercise 3.3. 1. Let A = B = Z with usual <. Check whether the given
function f from A to B is poset isomorphism.

3.8 Bounds of a POSETS

In this section, we will discuss about an algebraic structure which is connected with
mathematical logic and partially ordered set. We will also discuss certain external
properties of the elements of posets which lead us to define algebraic structure known
as lattice.

3.8.1 Greatest and Least Element

If we consider the set of natural numbers and the elementary arithmetic operations,
which are ged and lem of two numbers a and b, then one can notice that for every
pair a,b € N, there always exists a number which divides both a and b, also called the
greatest common divisor or ged(a, b) of a and b such that ged(a,b) < a as well as from
b. Similarly, there is the least common multiple of a and b, such that a < lem(a,b)
and b < lem(a,b). On the same line, we define the greatest and the least elements

lem{a, b)
L

ged{a,b)

Figure 3.9: Greatest and the least element

for a partially ordered set.
Definition 3.9. Let (A, <) be a partially ordered set. If

1. there exists an element a € A such that x < a for all z € A. Then a € A is
called a greatest element or top element of A;

2. there exists an element b € A such that b < z for all x € A. Then b € A is
called a least element or bottom element of A.
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Greatest and least element of a poset (A, <), if exist then, they will be unique
and they will be comparable with all other elements of A. Therefore, now onwards
we will use the least and the greatest element of A.

Consider the following examples:

Example 3.22. Let A = {a,b,c}. Then consider a poset (P(A), C), with the partial

order, set inclusion. Let
L= {®7 {17 2}7 {2}7 {3}}
Then, (L, C) is a poset and () is the least element of L as ) C B for all B € L. But

L has no greatest element.

Example 3.23. Let us consider M = {{2},{3},{1,2},{1,2,3}}. Then (M, Q) is again
a poset and {1, 2, 3} is the greatest element of M, because B C {1,2,3} forall B € M.
Here, M has no least element.

Example 3.24. Consider N = {{2}, {3}, {1,3}}. Here, in the poset (IV, C) neither has
the least element nor the greatest element.

Example 3.25. Consider O = {0, {1},{3},{1,3}}. Then (O, Q) is a poset. Then O
has both the greatest and the least elements, which are {1,2,3} and ) respectively.

3.8.2 Maximal and Minimal Elements

Definition 3.10. Let (A, <) be a poset. Then an element a € A is called a maximal
element of A, if there does not exist any x € A such that a < b.

That is, a maximal element need not be comparable with all the elements of poset.
Similarly, we have

Definition 3.11. Let (A, <) be a poset. Then an element b € A is called a minimal
element of A, if there does not exist any x € A such that x < b.

We already mentioned that the least and the greatest elements, if exist are always
unique. That is, there is at the most one least and one greatest element.

Remark. But there may be none, one or more than one maximal and minimal element
of a poset (A4, <).

Consider the Example 3.22, here the minimal element is () but {3}, {1, 2} both are
maximal elements of (L, C).

Note. Every greatest element is maximal and every least element is minimal.

Also, a minimal element need not be the least one and maximal element need not
be the greatest element.

1. A poset (A, <) may not have a maximal element. Consider the poset (N, <),
with the usual less than or equal to relation. Then (N, <) has no maximal
element.
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2. Consider a set A = {2,3,4,6, 7} with the partial order “divisible”, that is a < b
if and only if a divides b. Then 4,6 and 7 all are maximal elements. That is,
(A, <) has more than one maximal elements.

We can also observe that (A, <) has no greatest element. That is, a maximal
element need not be the greatest element.

With the help of maximal element, we are in position to prove that the greatest
element of a poset (A, <) is unique, if it exists.

Result 3.1. The greatest element of a poset is always a maximal element and it is
always unique, if exists.

Proof. Let (A, <) be a poset. Let if possible, there exist two greatest element a,b € A.
Thus, from the definition, we have x < a and x < b for all z € A. Since, a,b € A.
Thus, we have a < b and b < a. Hence, by the anti-symmetric property, we have
a = b. Thus, the greatest element is unique.
Now, we will show that every greatest element is a maximal element.

For, this, let a € A be the greatest element of A. Let if possible, a is not the maximal
element of A. Then, there exists some y € A such that a < y, that is, we have a <y
but a # y. Since, a is the greatest element of A, thus, we have y < a. Hence, we have
a = y. Hence, a is a maximal element of A. O

Similarly, we have the following result.

Result 3.2. The least element of a poset is always a minimal element and it is always
unique, if exists.

Example 3.26. Let us consider A = {2,3,4,6,7}. Then consider a partial order
relation <, define as a < b if and only if a divides b. Here, minimal elements are 2, 3
and 7. Because, there does not exist a € A such that a < 2, a < 3 and a < 7. Hence,
there is no least element of this poset.

In the next result, we will provide a sufficient condition for the existence of max-
imal and minimal elements.

Theorem 3.6. Every non-empty finite subset of a poset (A, <) has maximal and min-
imal elements.

Proof. Let (A, <) be a poset and let A = {z1,z,...,2,} be a non-empty set. Let x,
is a maximal element of A, then we are done.

If not, there must exist some x; € A such that z; < x;. If ; is a maximal element
of A, then we are done. If not, again, there exist some z; € A such that x; < x;.

Continue like this, this process will end after a finite number of steps. Hence, we
get some element x € A, which is a maximal element.

On the similar lines, one can show that there exists minimal element of A as
well. O

In the following, we define upper bound, lower bound, supremum and infimum of
a poset, which is analogous to the respective concept in analysis.
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Definition 3.12. Let (A, <) be a partially ordered set and B C A. Then
1. a € A is called an upper bound of B if x < a for all x € B;
2. a € A is called a lower bound of B if b < x for all z € B;

3. The least upper bound of B, if it exists is called the supremum or the least
upper bound of B and is denoted by sup B;

4. The greatest lower bound of B, if it exists, is called the infimum or the greatest
lower bound of B and it is denoted by inf B.

Remark. The supremum and the infimum of a set B is always unique, if they exist.
Also, the supremum and infimum of the set may or may not belong to the set.

Let A = R be the set of all real numbers with usual <. Then consider posets
(A, <) and B = (0,1) C A. Then inf B = {0} and sup B = {1} which are not belong
to B.

Again consider, A = N, the set of natural numbers with usual < relation. Then
(A, <) has the infimum element that is, 1 € A but A has no supremum element in A.

Note. 1. There can be more than one upper bound (respectively, lower bound) of
a set. But there will be at the most one supremum (respectively, infimum).

2. The greatest element of the set is always belongs to the set, whereas the supre-
mum or upper bound of the set may lie outside of the set.

3. If the supremum of the set, lies in the set then it will be nothing but the greatest
element of the set.

The following is an equivalent version of well ordering principle.

Theorem 3.7 (Zorn’s Lemma). Let (A, <) be a poset such that every chain of elements
in A has an upper bound in A, then A has at least one maximal element.

From the above discussion, one can say that in general not every poset (A, <) has
sup or inf.

Example 3.27. Let us consider a poset (A, <) with the Hasse diagram3.10.

1. Then B = {1,2,3} is a subset of A and the upper bound of B are 5,6, 10 and 8
and the least upper bound of B is 5 as we have 5 < 6, 5 < 8 and 5 < 10.

Also, the lower bound of B is 1 only. Thus, it will be the infimum or the greatest
lower bound of B.

2. Consider C' = {8,10} C A. Then, C has no upper bound in A. But has lower
bounds, which are 1,2,3,4,5 and 6. Here the infimum of C is 6.

3. Consider D = {1,3,4,6} C A. Then the upper bounds of D are 6,8 and 10
and the supremum of D is 6. Also, the lower bound of D is only 1, which is the
infimum of the set D.
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1

Figure 3.10: Poset (A, <)

In-text Exercise 3.4. 1. Let A ={2,4,6,9,12,18,27,36,48,60,72} be a set and <
be a partial order relation defined as a < b if and only if a divides b. Then find

2. Give a poset that has

(a) maximal element but no minimal element;
(b)

¢) both maximal and minimal element;
)

(
(d

minimal element but no maximal element;
neither a maximal, nor a minimal element.

3.9 Summary

In this chapter, we have covered the following;:
1. A function f from A to B is a relation from A to B such that

(a) for all a € Dom(f), f(a), the f-relative set of a is non-emptys;

(b) for every a € Dom(f), f-relative set of a contains exactly one element of
B.

2. Let A be a non-empty set. Then the identity function /4 on A is define as

Ip(a)=aforallac A
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3. A function f, define from A to B, is
(a) onto if Ran(f) = B;

(b) one-one if

(c) everywhere defined, if Dom(f) = A.
4. A function f is said to be invertible if its inverse relation f~! is also a function;

5. If f and g be two invertible functions, such that f o g exists. Then f o g is also
invertible and

(fog) =g lof
6. Let (A, <) and (B, <) be two posets. Then a map f: A — B is called

(a) isotone if whenever x <y, we have f(x) <’ f(y), for all z,y € A;

(b) poset homomorphism if
xr <y if and only if f(z) < f(y)

(¢) poset isomorphism if f is one-one, onto and poset homomorphism.

3.10 Self-Assessment Exercise

1. Check, whether the given function f is one-one and onto

(a) f: N — Q define as

T
fla) =
(b) f: R™ — R define as
flx) ="

(¢) f: A— B, where A={1,4,9,16} and B = {1,2,3,4} and
f(x) = /x, the positive square root of x

2. Give an example of a function, which is

(a) one-one but not onto;

)
(b) onto but not one-one;
(¢) one-one and onto both;
)

(d) neither one-one nor onto.
3. Show that if a function f is one-one then f~! is also one-one, if exists.

4. Find the dual of the following posets
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(a) (Z,<);
(b) (P(A),2);
(¢) (Z,<), where a < b if and only if a divides b.

5. Let A= B = Q, the set of rational numbers and f: A — B defined by
flx) =2+ 1
Then, show that f is isotone. Also, check whether f is a poset homomorphism.

6. Check, whether the posets with the following Hasse diagrams are lattices.

3.11 Solutions to In-text Exercise

In-text Exercise 3. 1 1. (a) R is a function;
(b) R is not a function as R(a) = {1, 2}, which is not singleton;
(¢) R is a function;
(d) R is not a function as R(a) = {1, 2}.
2. Here R is a function as for each a € A, R(a) has at the most one element
from B.

(z4+2)2+2=a2+22+6

f is not onto as w € B, there does not exist any x € A such that
f(z) =w.

(b) f is not one-one as we have f(a) = f(d) = x but a # d;

(¢) f is one-one and onto both;

(d) f is not one-one as f(1) = f(—1) =1 but 1 # —1.
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—_

30

Figure 3.11: Hasse Diagram

(a) Here f~'(z) = 3&H;

() f71=1(31),(4,2),(1,3),(2,4),(5,5)}
Consider the function f: N — A define as

flz) =2z

(a) f~!is not a function;
(b) f~1is a function.

See Figure 3.11

(a) (1,1,2) = (1,2,1)

(b) (1,2,3,4) < (2,3,4,5)

(¢) Hi < Him

(a) No,as 1 <2but f(1) =-1¢ —2= f(2)
(b) Yes

(¢) No, as f is not one-one.
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Unit Overview

This unit is devoted to basic introduction to lattices, its properties and its different
types. We have kept the treatment of concepts as elementary as possible. We have
carefully prepared the ground for students who will progress to study its computer
science applications in future. Within lattice theory we have placed emphasis on
sublattices, product of lattices and distributive lattices. The study of lattices com-
bines algebraic, order-theoretic and graph-theoretic ideas to provide results which are
linked to the partial ordered sets studied in the previous unit.

Chapter 1 provides a firm foundation for the concept of lattices as a special kind
of partial ordered set as well as an algebraic structure. It further discusses sublattice
of a lattice. In chapter 2, we studies product of lattices and isomorphism between
lattices. Chapter 3 deals with two different types of lattices, namely distributive lat-
tice and complemented lattice. Complemented distributive lattices will be studied
extensively in the following unit.

Lattice theory has many applications in the field of computer science and concept
analysis. The field of concept analysis has already made an impact on lattice theory
and has a lot to offer to social scientists concerned with data analysis. Many of
the topics covered are relevant to and have connections with computer science or
information science. We will see many applications to the theory in the following
unit.
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Lesson - 4

Introduction to Lattices

Structure
4.1 Learning Objectives 78
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4.3 Lattices as a POSET 79

4.3.1 Remarks on join(V) and meet(A) 80
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4.7 Summary 90
4.8 Self Assessment Exercise 91
4.9 Answers to In-Text Exercises 93
4.10 References 94
4.11 Suggested Readings 94

4.1

After reading this lesson, the reader should be able:

Learning Objectives

to understand the concept of lattices as a special kind of poset as well as an

algebraic structure and equivalence between the two approaches.
to identify lattices (both finite and infinite) among posets.
to find join and meet of subsets of a lattice, when they exist.

to recognise bounded lattices and find their bounds.

to list sublattices of a lattice.
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4.2 Introduction

The development of ‘Lattice Theory’ started in 1854, when George Boole (1815 -
1864) introduced an important class of algebraic structures in his publication ‘Math-
ematical Analysis of Logic’. His goal was to find a mathematical model for human
reasoning. In his honor these structures have been called Boolean algebras. They are
special types of lattices. It was E. Schroder, who about 1890 considered the lattice
concept in today’s sense. Later in 1933-37, a series of articles were published by G.
Birkhoff, Von Neumann, Ore etc. Their work showed that lattices have fundamen-
tal applications in modern algebra, projective geometry, point-set theory, functional
analysis, and logic and probability. As a result of all this pioneer work, lattice theory
was recognised as a substantial branch of modern algebra.

We have already seen partially ordered sets in the previous chapters. Many im-
portant properties of a partially ordered set P are expressed in terms of the existence
of upper bounds and lower bounds of subsets of P. One of the most important classes
of partially ordered sets defined in this way is lattices. Here we present some ba-
sic properties of such partially ordered sets, and also consider lattices as algebraic
structures in a way that is reminiscent of the study of, for example, groups and rings.

4.3 Lattices as a POSET

Let us first recall definitions of least upper bound and greatest lower bound of a subset
of a poset.

Definition 4.1. Let P be a poset and let S C P. An element x € P is an upper bound
of S'if s <z for all s € S. An element y € P is a lower bound of S if y < s for all
s € S. The set of all upper bounds of S is denoted by S* (read as ‘S upper’) and the
set of all lower bounds of S is denoted by S! (read as ‘S lower’):

St:={rxreP|s<uzVseS} and St:={yeP|s>yVscS)

Definition 4.2. Let P be a poset and let S C P. If S* has a least element x, then x
is called the least upper bound of S. Equivalently, x is the least upper bound of §S' if

(i) « is an upper bound of S
(ii) x <y for all upper bounds y of S, i.e. if s <y,Vs € S, then z < y.

Definition 4.3. Let P be a poset and let S C P. If S! has a greatest element z, then
x is called the greatest lower bound of S. Equivalently, x is the greatest lower bound

of S if
(i) « is a lower bound of S

(ii) x > y for all lower bounds y of S, i.e. if s > y,Vs € S, then z > y.
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Since least elements and greatest elements are unique, least upper bounds and
greatest lower bounds are unique when they exist. The least upper bound of S is also
called the supremum of S and is denoted by sup S; the greatest lower bound of S is
also called the infimum of S and is denoted by inf S.

Remark. Recall from the previous chapter that the top and bottom elements of a
poset P are denoted by T and L respectively. If P has a top element, then P* = {T}
in which case sup P = T. When P has no top element, we have P* = () and hence
sup P does not exist. Similarly, inf P =1, if P has a bottom element.

Now we define the term ‘Lattice’.

Definition 4.4. A lattice is a poset (L, <) in which every subset {a,b} consisting of
two elements has a least upper bound and a greatest lower bound. We denote the
least upper bound of {a,b} by a V b and call it the join of a and b. Similarly, we
denote the greatest lower bound of {a,b} by a A b and call it the meet of a and b.

4.3.1 Remarks on join(V) and meet(A)

1. Let P be a poset. Let x,y € P such that x Vy and x A y exist in P, then
x Ay < z,y < xVy. This holds because x Ay is a lower bound of x and y while
x V y is an upper bound.

2. Let P be any poset. If x and y belongs to P and x < y, then y is the least upper
bound of {z,y} and = is the greatest lower bound of {z,y}. Thus whenever
xr <y, wehave rVy =y and z Ay = z. In particular, since < is reflexive, we
have x Vo =2 and x Az = .

3. In a poset P, the least upper bound x V y of {z,y} may fail to exist for two
different reasons:

(a) z and y have no common upper bound, or

(b) the set of upper bounds of {x,y} has no least element.

In Figure 4.1(i) the set {b,c¢} has no upper bound because b and ¢ has no
common upper bound. Thus {b,c}* = () and hence b V ¢ does not exist. In
(ii) we find that {c,d}" = {a, b} which has no least element as a and b are not
comparable. Hence ¢V d does not exist.

d c a b
>/ P
a c d
0} (it

Figure 4.1:
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4. Consider the poset shown in Figure 4.2. At first glance anybody would think
that a Vb = e, but on careful inspection we find that {a,b}" = {d, e, f}. Since d
and e are minimal elements of {d, e, f} and d || e, the set {d, e, f} has no least
element and hence a V b does not exist.

d e
c
a b
Figure 4.2:

5. Let P be a lattice. Then for all a,b,c,d € P,

(i) a <bimpliesaVe<bVcandaAc<bAc,
(ii)) a<band c < dimply aVe<bVdand aAc<bAd.

Proof. (i) By the definition of join, we know that b < bV cand ¢ < bV e.
By combining a < b and b < bV ¢, using transitivity we get a < bV c.
Thus, bV ¢ is an upper bound of {a, c}. Since a V ¢ is the least upper
bound of {a, c}, therefore a V¢ < bV ec.

(ii) We know that a < b < bV dand ¢ < d < bV d. This implies that
bV d is an upper bound of {a, c}, since a V ¢ is the least upper bound
of {a,c} we get aVe<bVd.

]

Example 4.1. Every chain is a lattice. Let P be a chain and let z,y € P. Then either
r<yory<z Ifx<y thenzxVy=yandzAy==z, andify <z, thenaxVy==x
and x Ay =y. Hence P is a lattice.

Example 4.2. Let X be a set and let L = P(X), the power set of X. We have seen
that inclusion relation, C, is a partial order relation on L. Let A and B belong to
the poset (L,C). Then AV B is theset AUBas A C AUB, BC AU B, and, if
A C (C and B C C, then it follows that AU B C C. Similarly, we can show that the
element AA B is the set ANB in (L, C). Thus, L is a lattice. Figure 4.3 shows Hasse
diagram of (P({1,2,3}), Q).

Example 4.3. Consider the poset (Z7, <), where for @ and b in Z*, a < b if and only
if a | b. Recall that k is the greatest common divisor of a and b if

e k divides both a and b (i.e., k < a and k <),

o if j divides both a and b, then j divides k (i.e., j < k for all lower bounds j of

{a,b}).
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{1,2,3}
{1.2} ‘b {2.3}
{1} {3}
0
Figure 4.3:

Thus the greatest common divisor of a and b is precisely the meet of a and b in
(Z*+,<). Similarly, the join of a and b in (Z*, <) is given by their least common
multiple. Thus (Z1, <) is a lattice in which

aVb=lem(a,b) and aNb= gcd(a,b).

Example 4.4. Let n be a positive integer and let D,, be the set of all positive divisors
of n. Then D, is a lattice under the divisibility relation as considered in Example
4.3. Thus, if n = 18, we have Dz = {1,2,3,6,9,18}. The Hasse diagram of Dsg is
shown in Figure 4.4(i). If n = 30, we have D3y = {1,2,3,5,6,10,12,18,36}. The
Hasse diagram of Dsq is shown in Figure 4.4(ii).

18

Figure 4.4:

Problem 4.1. Which of the following diagrams in Figure 4.5 represent lattices?

Solution. Hasse diagrams (a), (b), (¢) and (g) represent lattices. Diagram (d) does
not represent a lattice because neither b V ¢ nor d A e exist. Diagram (e) does not
represent a lattice because e V f does not exist. Diagram (f) does not represent a
lattice because a V b does not exist.

In-text Exercise 4.1. 1. Draw the Hasse diagram of the poset P = {1,2,3,4,5,6, 7}
under divisibility order. Find the join and meet, where they exist, of each of
the following subsets of P. Either specify the join or meet or indicate why it
fails to exist. Is P a lattice?

(1) {3}, (i1) {4,6}, (uii)  {2,3}, (iv) {2,3,6}, (v) {1,5}.
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A
c ¢ d e
b d R
b
J b b c
@ (b) (3) (d
e f 3
d e
c d
b d
b c
© (?) ()
Figure 4.5:

4.4 Lattices as Algebraic Structures

In the last section we introduced lattices as posets of special type. In this section
we view a lattice as an algebraic structure (L, A, V) and explore the properties of the
binary operations V and A. We first amplify the connection between A,V and <. We
prove this connection in the following lemma:

Lemma 4.1. (The Connecting Lemma): Let L be a lattice and let a,b € L. Then the
following are equivalent:

(i) a<b
(ii) avVb=10
(iii) a Ab=a.

Proof. It is shown in Section 4.3.1(2) that (i) implies both (i7) and (iii). Now we
assume (i7) is true. Then b is an upper bound for {a,b} and therefore b > a. Thus,
() holds. Similarly, (ii7) implies a is a lower bound of {a, b} and therefore a < b and

hence (i) hold. O

Definition 4.5. An (algebraic) lattice (L, A, V) is a set L with two binary operations
A (meet) and V (join) which satisfy the following laws for all x,y, z € L:

(L) x ANy =y Az, rVy=yVuz,

(L2) xAN(yANz)=(xAy) Nz, zV(yVz)=(xVy)Vz,
(L3) z A (zVy) ==, zV(rAy) ==,

(L4) z Nz =z, rVar=uz.
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(L1) is the commutative law, (L2) is the associative law, (L3) is the absorption law,
and (L4) is the idempotent law.

In the following theorem we will establish the equivalence of two definitions of lattices.
We will do it in two steps.

Step 1: Consider a poset (L, <). Define V and A operations on L using supremum and
infimum of elements as

aV b= sup{a,b} and a A\ b= inf{a, b},
and show that these operations satisfy all four identities (L) — (L4) given in

Definition 4.5, thus forming an algebraic lattice.

Step 2: Conversely, we begin with an algebraic lattice (L,V,A). We define a binary
relation < on L as
a<bsaNb=a,

and show that it is a partial order relation on L, thus making (L, <) a poset.
We will further verify that supremum and infimum defined using this partial
order relation agrees with the join and meet operations of the algebraic lattice
(L,V,N), ie.,

aVb=sup{a,b} and a Ab=inf{a,b}.

Theorem 4.1. (Equivalence of lattice as a poset and lattice as a algebraic structure)

(i) Let (L, <) be a lattice ordered set. If we define
x Ay :=inf {z,y}, xVy:=sup {z,y},
then (L, A, V) is an algebraic lattice.
(ii) Let (L, A, V) be an algebraic lattice. If we define
sy rANy=ux,
then (L, <) is a lattice ordered set.
Proof. .

(i) Let (L, <) be a lattice ordered set. For all z,y,z € L we have:

(L1) zAy=inf{z,y} =inf{y,z} =y A=z,
xVy=sup{z,y} = sup{y,x} =y V.

(L2) zA(yAz) =z ANinf{y, 2z} = inf{x,inf{y, 2}} = inf{z, y, 2}

= inf{inf{z,y}, 2z} =inf{z,y} Az = (x Ay) A 2,

and similarly =V (yVz)=(zVy)V z.

(L3) xA(zVy)=azAsup{z,y} = inf{z,sup{z, y}} = =,
zV (zAy) = Vinf{z,y} = sup{z,inf{z,y}} = =.

(L4) zAz=inf{z} ==z,
zVx=sup{zr}==x.
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(ii) Let (L, A, V) be an algebraic lattice. Clearly, for all x,y, z in L:

e xAz=xand zVzx=uzby (L4);sox <z ie., <is reflexive.

o Ifx <yandy <z, thenzAy =z and yAx =y, and by (L1) x Ay = yAx,
so x =y, i.e., < is antisymmetric.

e Ifx <yandy <z then 2 Ay =2 and y A z = y. Therefore
r=xANy=xzAyYANz)=(@Ay)ANz=xAz
so z < z by (L2), i.e., < is transitive.

This proves (L, <) is a poset.

Now, let z,y € L. Then = A (z Vy) = z implies z < z V y and similarly
yA(yVzx)=yimplies y < zVy. Thus, xVy is an upper bound of {z,y}. Now
let z € L be any upper bound of {z,y}. Then x < z and y < z. This implies

(@Vy) vz = zV(yVvz) (by(Ll))
= xVz (y < z),
= z (- <z),

Hence, (x V y) V z = z, and implies  V y < z. Thus z V y is the least upper
bound of {z,y}, i.e., sup{z,y} = = Vy. Similarly inf{z,y} = x A y. Hence
(L, <) is a lattice ordered set.

]

It follows from The Connecting Lemma that Theorem 4.1 yields a one-to-one re-
lationship between lattice ordered sets and algebraic lattices. Therefore we shall use
the term lattice for both concepts. We may henceforth say ‘Let L be a lattice’, re-
placing L by (L, <) or by (L, A, V) if we want to emphasize that we are thinking of
it as a special kind of poset or as an algebraic structure. The number of elements of
L, denoted by |L|, is called the cardinality (or order) of the lattice L.

In a lattice L, associativity of A and V allows us to write iterated joins and meets
unambiguously without brackets. An easy induction shows that these correspond to
sups and infs in the following way:

\/{al,aQ, v lp} =a1Vag V...V ay,,

/\{al,aQ, e Op} =ay Nag A ... N\ ay,

for ay,aq,...,a, € L(n > 1). Consequently, if F' is a subset of a poset, then \/ F' and
/\ F' denote the supremum and infimum of F respectively, whenever they exist. We
say that the supremum of F' is the join of all elements and infimum is the meet of all
elements of F.
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4.5 Bounded Lattice

Definition 4.6. Let (L, A, V) be a lattice. We say that L has a one if there exists 1 € L
such that a = a A 1 for all @ € L. Further, L is said to have zero if there exists 0 € L
such that @ = a v 0 for all @ € L. A lattice (L, A, V) possessing 0 and 1 is called
bounded.

Remark. ¢ The lattice (L, A, V) has a one if and only if (L, <) has a top element
T and, in that case, 1 = T . Similarly, the lattice (L, A, V) has a zero if and
only if (L, <) has a bottom element L and, in that case, 0 =_L.

o In a lattice, zero and one elements, if exist, are unique.
o A finite lattice L is bounded, with 1 =\/ L and 0 = A L.
Proof. Let L = {ay,az,as,...,a,}. Let b=\/L =a; VasV..Va, Thenbis

a unit element as a; < b for each i. Similarly, A L = a; Aas A ... A a, is a zero
element of L. O

o If L is a bounded lattice, then for alla € L, 0 < a <1 as
aVO0=a, aAN0=0

aV1i=1, aANl=a.

Example 4.5. The lattice N under the partial order of divisibility is not a bounded
lattice since it has a zero element, the number 1, but has no greatest element.

Example 4.6. The lattice Z under the usual partial order < is not bounded since it
has neither a zero element nor a one element.

Example 4.7. The lattice P(X) of all subsets of a set X, is bounded. Its one element
is X and its zero element is (). In particular, the lattice P(N) is bounded with zero
element as () and one element as N.

In-text Exercise 4.2. 1. Which of the following structures (L, <) are lattices, lat-
tices with a zero element, lattices with a unit element?

(a) L is the set of all finite subsets of an infinite set A and < is the inclusion
relation C.

(b) Lo with inclusion relation C, where Ly is a set of subsets of an infinite set
A defined as follows:

Ly:={X CA|X finite}UA
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(c) L is the set of all infinite subsets of an infinite set A and < is inclusion
relation.

(d) L is the set of all subsets of a set A containing a fixed subset, C, i.e.,
L={X:CCX C A} and < is inclusion relation.
2. Which of the following is/are correct regarding lattices.

({1,2,3,6,9,18}, /) is a bounded lattice, where / is divisibility order.
(Z, <) is a bounded lattice.

([0, 1], <) is a bounded lattice.

((0,1), <) is a bounded lattice.

(a)
(b)
()
(d)

4.6 Sublattices

Definition 4.7. Let L be a lattice. A non-empty subset M of L is called a sublattice
of L if it is closed with respect to V and A of any two elements i.e., a,b € M =
aVbe Mand aAb e M. The set of all sublattices of L is denoted by Sub L, and
Suby L = Sub L U {0}.

Example 4.8. .
1. Any singleton subset