## Appendix-41 Resolution No. 38 {38-1 [38-1-3(6)]}



# **DEPARTMENT OF CHEMISTRY**

# <u>SEMESTER – II</u>

## **B.Sc in Physical Sciences**

| <u>Sl. No.</u> | <u>Content</u>                                                                    | Page No. |
|----------------|-----------------------------------------------------------------------------------|----------|
| 1              | DISCIPLINE SPECIFIC CORE (DSC)<br>(1) Periodic Properties and Chemical<br>Bonding | 03-05    |



# **Bachelor of Sciences in Physical Sciences**

## **Category II**

#### Physical Science Courses for Undergraduate Programme of study with Chemistry as one of the Core Disciplines

### STRUCTURE OF SECOND SEMESTER

A student who pursues undergraduate programme with Physical Science is offered the following courses:

**3 Discipline Specific Cores (DSCs)** - 3 courses of 4 credits = 12 credits (offered by the parent Departments i.e. Chemistry, Physics, Mathematics)

0 Discipline Specific Electives (DSE) – No DSE courses in Semester II

**1 Generic Elective (GE)** – 1 course of 4 credits = 4 credits (one course to be chosen from the common pool of GE courses offered by Departments other than the parent Department)

**1 Ability Enhancement Course (AEC)** – 1 course of 4 credits = 4 credits (one course to be chosen from either 'Environmental Science: Theory to Practice' or one of the 22 Indian Languages listed in the 8<sup>th</sup> Schedule of the Constitution in the pool of AEC courses)

**1 Skill Enhancement Course (SEC)** - 1 course of 4 credits = 4 credits (one course to be chosen from the common pool of SEC courses offered by any Department)

**1 Value Addition Course (VAC)** - 1 course of 4 credits = 4 credits (one course to be chosen from the common pool of VAC courses offered by any Department)

| Semester | Core           | Elective | Generic  | Ability   | Skill     | Internship/   | Value    | Total   |
|----------|----------------|----------|----------|-----------|-----------|---------------|----------|---------|
|          | (DSC)          | (DSE)    | Elective | Enhance-  | Enhance-  | Apprentice-   | addition | Credits |
|          | 4 credits      | 4        | (GE)     | ment      | ment      | ship/Project/ | course   |         |
|          |                | credits  | 4        | Course    | Course    | Community     | (VAC)    |         |
|          |                |          | credits  | (AEC) –   | (SEC) –   | outreach      | 2        |         |
|          |                |          |          | 2 credits | 2 credits | 2 credits     | credits  |         |
| Ι        | <b>DSC - 4</b> |          | Choose   | Choose    | Choose    |               | Choose   | 22      |
|          | <b>DSC - 5</b> |          | one      | one from  | one from  |               | one      | credits |

| <b>DSC - 6</b> | NIL | from a  | a pool of | a pool of | NIL | from a  |  |
|----------------|-----|---------|-----------|-----------|-----|---------|--|
|                |     | pool of | AEC       | SEC       |     | pool of |  |
|                |     | courses | courses   | courses   |     | VAC     |  |
|                |     | GE-2    | (2)       | (2)       |     | courses |  |
|                |     | (4)     |           |           |     | (2)     |  |

#### DISCIPLINE SPECIFIC CORE COURSE – 4: Chemistry-II- Periodic Properties and Chemical Bonding

#### **CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE**

| Course title<br>& Code                                       | Credits | Credit distribution of the course |          |                        | Eligibility<br>criteria                                  | Pre-<br>requisite            |
|--------------------------------------------------------------|---------|-----------------------------------|----------|------------------------|----------------------------------------------------------|------------------------------|
|                                                              |         | Lecture                           | Tutorial | Practical/<br>Practice |                                                          | of the<br>course<br>(if any) |
| Periodic<br>Properties<br>and Chemical<br>Bonding<br>(DSC-4: | 4       | 2                                 | 0        | 2                      | Chemistry,<br>Physics and<br>Mathematics<br>in class XII | NA                           |

#### **Learning Objectives**

#### The Learning Objectives of the course are as follows:

- to discuss the periodicity in properties with reference to the s, p and d block, which is necessary in understanding their group chemistry.
- to provide basic knowledge about ionic, covalent and metallic bonding underlining the fact that chemical bonding is best regarded as a continuum between the three cases.
- to provide an overview of hydrogen bonding and van der Waal's forces which influence the melting points, boiling points, solubility and energetics of dissolution of compounds

#### Learning outcomes

#### By the end of the course, the students will be able to:

- Explain the periodicity in ionization enthalpy, electron gain enthalpy, electronegativity and enthalpy of atomization.
- Explain variability in oxidation state, colour, metallic character, magnetic and catalytic properties and ability to form complexes
- Comprehend the concept of lattice energy using Born-Landé expression.
- Use Born Haber Cycle to analyse reaction energies.
- Draw and explain the plausible geometries of molecules using VSEPR theory.
- Draw and explain MO diagrams (homo- & hetero-nuclear diatomic molecules).

#### **Unit 1: Periodic Properties**

Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy, inert pair effect.

General group trends of s, p and d block elements with special reference to Ionization Enthalpy, Electron Gain Enthalpy, Electronegativity, Enthalpy of Atomization, oxidation state, colour, metallic character, magnetic and catalytic properties, ability to form complexes

#### **UNIT 2: Chemical Bonding**

**Ionic Bonding**: General characteristics of ionic bonding, Lattice Enthalpy and Solvation Enthalpy and their relation to stability and solubility of ionic compounds, Born-Lande equation for calculation of Lattice Enthalpy (no derivation), Born-Haber cycle and its applications, polarizing power and polarizability, Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

**Covalent Bonding**: Valence Bond Approach, Hybridization and VSEPR Theory with suitable examples, Concept of resonance and resonating structures in various inorganic and organic compounds, Molecular Orbital Approach: Rules for the LCAO method, bonding, nonbonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, MO treatment of homonuclear diatomic molecules of 1<sup>st</sup> and 2<sup>nd</sup> periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO<sup>+</sup>.

Brief introduction to Metallic Bonding, Hydrogen Bonding, van der Waal's Forces

#### **PRACTICALS:**

#### (Laboratory periods: 60)

- 1. Preparation of standard solutions.
- 2. Estimation of Sodium carbonate with HCl
- 3. Estimation of oxalic acid by titrating it with KMnO<sub>4</sub>.
- 4. Estimation of Mohr's salt by titrating it with KMnO<sub>4</sub>.
- 5. Estimation of water of crystallization in Mohr's salt by titrating with KMnO<sub>4</sub>.
- 6. Estimation of Fe (II) ions by titrating it with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> using internal and external indicators.
- 7. Estimation of Cu (II) ions iodometrically using Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>.
- 8. Chromatographic separation of mixture of metal ions Cu<sup>2+</sup>, Cd<sup>2+</sup> or Ni<sup>2+</sup>, Co<sup>2+</sup>.
- 9. Estimation of Fe (II) ions by titrating it with  $K_2Cr_2O_7$  using
  - a). internal indicator
  - b). external indicator
- 10. Estimation of Cu (II) ions iodometrically using  $Na_2S_2\,O_3$  .
- 11. Paper Chromatographic separation of mixture of metal ions
  - a). Cu<sup>2+</sup>, Cd<sup>2+</sup>
  - b). Ni <sup>2+</sup> , Co <sup>2+</sup>

12. Any suitable experiment (other than the listed ones) based upon neutralisation/redox reactions.

#### **References:**

#### Theory:

1. Huheey, J.E.; Keiter, E.A., Keiter; R. L.; Medhi, O.K. (2009), Inorganic Chemistry-Principles of Structure and Reactivity, Pearson Education

#### (15 Weeks)

#### (9 weeks)

- 2. Shriver, D.D.; Atkins, P.; Langford, C.H. (1994), **Inorganic Chemistry** 2nd Ed., Oxford University Press.
- 3. Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A. (2010), **Inorganic Chemistry**, 5th Edition, W. H. Freeman and Company.
- 4. Lee, J.D.; (2010), Concise Inorganic Chemistry, Wiley India
- 5. Douglas, B.E.; McDaniel, D.H.; Alexander, J.J. (1994), Concepts and Models of Inorganic Chemistry, John Wiley & Sons.
- 6. Wulfsberg, G (2002), Inorganic Chemistry, Viva Books Private Limited.
- 7. Miessler, G.L.; Fischer P.J.; Tarr, D. A. (2014), Inorganic Chemistry, 5th Edition, Pearson.

#### **Practical:**

• Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. (1989), Vogel's Textbook of Quantitative Chemical Analysis, John Wiley and Sons.

# **Note:** Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.