

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

UNIVERSITY OF DELHI NETAJI SUBHASINSTITUTE OF TECHNOLOGY

CHOICE BASED CREDIT SYSTEM

SCHEME OF COURSES FOR M.TECH. (MECHATRONICS)

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

TABLE OF CONTENTS							
S. No	Contents	Page Number					
1.	PREAMBLE	3-8					
2.	EVALUATION SCHEME	9-12					
3.	SCHEME SEMESTER-WISE COURSE ALLOCATION-FULL-TIME	13-14					
4.	SCHEME SEMESTER-WISE COURSE ALLOCATION-PART-TIME	15-17					
5.	LIST OF DISCIPLINE CENTRIC ELECTIVES	18-19					
6.	LIST OF OPEN ELECTIVES	20					
7.	COURSE CONTENTS OF CORE COURSES	21-24					
8.	COURSE CONTENTS OF DISCIPLINE CENTRIC ELECTIVES	25-62					
9.	COURSE CONTENTS OF OPEN ELECTIVES	63-82					

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

PREAMBLE

I. INTRODUCTION

Higher education is very important for the growth and development of any country. It is a living organ and requires continuous changes to ensure the quality of education. National Knowledge Commission and University Grants Commission have recommended many academic reforms to address the challenges of today's networked globalized world. People are coming together with the help of new technologies which is resulting towards new aspirations, expectations, collaborations and associations. The concept of "work in isolation" may not be relevant and significant anymore. The UGC guidelines on adoption of Choice Based Credit System may be an important step to revamp the processes, systems and methodologies of Higher Educational Institutions (HEIs). The teacher centric mode be changed to learner centric mode. Class room teaching and learning be made effective; relevant and interesting. Concepts and theories be explained with examples, experimentation and related applications.

A culture of discussions, arguments, interpretations, counter-interpretations, re-interpretations, opposing interpretations must be established. Research should not only be confined to redefinition, extension and incremental change. Innovation & creativity should become an epicentre for all research initiatives. The most important capital is the human capital and thus the ultimate objective is to develop good human beings with utmost integrity & professionalism for this new world.

The Choice Based Credit System supports the grading system which is considered to be better than conventional marks system. It is followed in many reputed institutions in India and abroad. The uniform grading system facilitates student mobility across the institutions within and across the countries and also enable potential employers to assess the performance of the students. The Choice Based Credit System makes the curriculum interdisciplinary and bridge the gap between professional and liberal education.

II. CHOICE BASED CREDIT SYSTEM

The Indian Higher Education Institutions have been moving from the conventional annual system to semester system. Currently many of the institutions have already introduced the choice based credit system. The semester system accelerates the teaching-learning process and enables vertical and horizontal mobility in learning. The credit based semester system provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching. The choice based credit system provides a 'cafeteria' type approach in which the students can take courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits, and adopt an interdisciplinary approach to learning. It is desirable that the HEIs move to CBCS and implement the grading system.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

3

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

A. Types of Courses

Courses are the subjects that comprise the M.Tech.programme.

- 1. A course may be designed to comprise lectures, tutorials, laboratory work, field work, outreach activities, project work, vocational training, viva, seminars, term papers, assignments, presentations, self-studyetc.oracombination of some of these components.
- 2. The learning objectives and learning outcomes of each course will be defined before the start of a semester.
- 3. Courses are of twokinds:Core and Elective.
 - i. **Core Course (CC)**: Thisis a course which is to be compulsorily studied by a student as a core requirement to complete the requirement of B.E. Computer Engineering.
 - Elective Course: An elective course is a course which can be chosen from a pool of subjects. It is intended to support the discipline of study by providing an expanded scope, enabling exposure to another discipline/domain and nurturingastudent's proficiency/skill. An elective may be of following types:
 - a) **Discipline Centric Elective (ED)**: It is an elective course that adds proficiency to the students in the discipline.
 - b) **Open Elective (EO):** It is an elective course taken from other engineering disciplines that broadens the perspective of an Engineering student.
- 4. Each course contributes certain credits to the programme. A course can be offered either as a full course (4 credits) or as a half course (2 credits). A full course is conducted with 3 hours of lectures and either 1 hour of tutorial or 2 hours of practical work per week. A half course is conducted with 2 hours of lectures.
- 5. A student of Postgraduate programme has to accumulate about 40% credits from the Core Courses and the remaining credits from the Elective Courses to become eligible for the award of degree/ diploma/ certificate programmes.
- 6. A course (full/half) may also be designed without lectures or tutorials. However, such courses may comprise Field work, Outreach activities, Project work, Vocational Training, Seminars, Self-study etc. or a combination of some of these.
- 7. A Project work/Dissertation is considered as a special course involving application of the knowledge gained during the course of study in exploring, analyzing and solving complex problems in real life applications. A candidate completes such a course on his own with an advisory support by a teacher/faculty member.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

B. Examination and Assessment

The following system will be implemented in awarding grades and CGPA under the CBCS system.

1. Letter Grades and Grade Points: A 10-pointgradingsystem shall be used with the letter grades as given in Table 1 below:

Letter Grade	Grade point
O (Outstanding)	10
A+ (Excellent)	9
A (Very Good)	8
B+ (Good)	7
B (Above average)	6
C (Average)	5
P (Pass)	4
F (Fail)	0
Ab (absent)	0

Table1:GradesandGradePoints

- 2. Fail grade: A student obtaining Grade F shall be considered failed and will be required to reappear in the examination. If the student does not want to reappear in an elective subject (that isED, EObut not CC courses) then he/she can re-register afresh for a new elective subject.
- **3.** Non-credit course: For non creditcourses, 'Satisfactory' or "Unsatisfactory' shall be indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA. However, a student must get satisfactory to get the degree.
- 4. Fairness in Assessment: The CBCS promotes continuous evaluation system where end semester examinations weightage should not be more than 60%. The Departments should design their own methods for continuous evaluation. They have the flexibility and freedom in designing the examination and evaluation methods that best fits the curriculum, syllabi & teaching, learning methods. In this regard, the checks and balances be implemented which would enable Departments effectively and fairly carry out the process of assessment and examination.
- **5.** Computation of SGPA and CGPA: The following procedure be used to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA):
 - i. The SGPA is the ratio of sum of the product of the number of credits with the grade points scored by a student in all the courses taken by a student and the sum of the number of credits of all the courses undergone by a student, i.e.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

5

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

$$SGPA(_{i}) = \frac{\sum C_{i} * G_{i}}{\sum C_{i}}$$

Where C_i is the number of credits of the ith courseand G_i is the grade point scored by the student in the ith course.

ii. TheCGPA is also calculated in the same manner taking into account all the courses under gone by a student overall the semesters of a programme, i.e.

$$CGPA = \frac{\sum C_i * S_i}{\sum C_i}$$

Where S_i is the SGPA of the i_{th} semester and C_i is the total number of credits in that semester.

iii. The SGPA and CGPA shallbe rounded off to 2 decimal points and reported in the transcripts.

iv. CGPA shall be converted into percentage of marks, if required, by multiplying CGPA with 10.

III. PROGRAMMESTRUCTURE

- 1. The M.Tech. Mechatronics MT full-time(FT)programmespans 4 semesters, normally completed in 2 years, while M.tech Mechatronics programe MT part-time(PT) spans 6 semesters, normally completed in three years.
- 2. The courses offered in each semester are given in the Semester-wise Course Allocation.
- 3. The discipline centric subjects under CC and ED categories are listed for each discipline separately.
- 4. A course may have pre-requisite courses that are given in the Semester-wise Course Allocation. A student can opt for an elective only if he/she has fulfilled its pre-requisites.
- 5. A student has to register for all electives before the start of a semester.

IV. COURSE CODIFICATION

The codes for various Postgraduate Program are as follows:

- i. Department of Electronics and Communication Engineering: EC
 - 1. Signal Processing-ECSP

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

- 2. Embedded System and VLSI-ECES
- ii. Department of Computer Engineering:
 - 1. Information System-COIS
- iii. Department of Instrumentation and Control Engineering: IC
 - 1. Process Control-ICPC
 - 2. Industrial Electronics-ICIE
 - 3. Mechatronics-ICMT
 - 4. Biomedical Instrumentation-ICBI
- iv. Department of Biotechnology: BT
 - 1. Biochemical Engineering -BTBC
 - 2. Bioinformatics-BTBF
- v. Manufacturing processes and Automation Engineering: MPAE
 - 1. CAD CAM-MACD
 - 2. Manufacturing process and Automation Engineering.-MAMP
 - 3. Production Engineering-MAPE
 - 4. Engineering Management- MAEM
 - 5. Nanotechnology- MANT

The codes for Departmental core subjects and Domain-specific Electives are specific to each Discipline. The first two characters are derived from Departmental codes listed above.

For Ist semester, the codes are:

MTC**	CC
MTC**	CC
MTD**	Elective
MTD**	Elective
MTD**	Elective
EO***	Open Elective

For IInd semester, the codes are:

MTC** CC

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

MTC**	CC
MTD**	Elective
MTD**	Elective
MTD**	Elective
EO***	Open Elective

For IIIrd semester, the codes are:

MTD**	Elective
MTD**	Elective
MTD**	Elective
MTC**	Seminar
MTC**	Major Project

For IVth semester, the codes are:

MTC**	Dissertation
-------	--------------

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

V. EVALUATION SCHEME

The courses are evaluated on the basis of continuous assessments, mid-semester exams and endsemester exams. The weightage of each of these modes of evaluation for the different types of courses are as follows.

Type of Course	CA	Mid	End-	Continuous	End-
		Semester	semester	Assessment	semester
		Exam	Exam	(Lab)	Exam (Lab)
		(Theory)	(Theory)		
CC/ED/EO	25	25	50	Nil	Nil
Theory with/					
without Tutorial					
CC/ED/EO	15	15	40	15	15
Theory with					
Practical					
Major Project and	Nil	Nil	Nil	40	60
Dissertation					

VI. DECLARATION OF RESULTS

The M.Tech. (MT) programme consists of 82creditsCGPA will be calculated on the basis of the best 78 credits earned by the student.

VII. EVALUATION AND REVIEW COMMITTEE

The Committee of Courses and Studies in each department shall appoint one or more Evaluationcum-Review Committees (ERC), each committee dealing with one course or a group of courses. This ERC consists of all faculty members who are likely to teach such courses in the group. Normally Head of the department shall be ERC Chairman.

The ERC has the following functions-

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

9

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

- (i) To recommend appointment of paper setters/examiners of various examinations at the start of each semester.
- (ii) To prepare quizzes, assignments, test papers etc. for Continuous Assessment (CA), Mid-Semester examination (MS) and End Semester (ES) examination and to evaluate them. Normally, each concerned faculty member, who is also a member of ERC, will do this job for his/her class. However, in exceptional circumstances any part of the work may be entrusted to some other member of the ERC.
- (iii) To consider the individual representation of students about evaluation and take remedial action if needed. After scrutinizing, ERC may alter the grades awarded upward/downward. The decision of the ERC shall be final.
- (iv) To moderate assignments, quizzes etc. for courses given by each of the concerned faculty members for his/her class with a view to maintain uniformity of standards.
- (v) To review and moderate the MS and ES results of each course with a view to maintain uniformity of standards.
- (vi) To lay guidelines for teaching a course.

VIII. ATTENDANCE, PROMOTION AND DETENTION RULES

- 1. A student should normally attend all the classes. However, a student will be allowed to appear in the examination if he/ she has put in a minimum of 75% attendance separately in each course for which he / she has registered. A relaxation up to a maximum of 25% may be given on the production of satisfactory evidence that (a) the student was busy in authorized activities, (b) the student was ill.
- 2. A student should submit the evidence to the fact 1(a) and / or 1(b) above within seven working days of resuming the studies. Certificates submitted later will not be considered.
- 3. No relaxation in attendance beyond 25% is permitted in any case.
- 4. A student may re-register for a course if he/ she want to avoid a decrement in the grades.
- 5. There shall be no supplementary examinations. A student who has failed in a course will have to reregister for the course in a subsequent year.
- 6. If the student does not want to reappear in an elective course (that is, ED, EO, but not CC courses) then he/she can re-register afresh for a new elective course.

IX. DECLARATION OF RESULTS

- 1. The M.Tech (ES) programme consists of 82 credits. A student will be awarded the degree if he/she has earned all 82 credits.
- 2. CGPA will be calculated on the basis of the best 78 credits earned by the student.
- 3. The candidate seeking re-evaluation of a course shall apply for the same on a prescribed pro-forma along with the evaluation fee prescribed by the University from time to time only for the End Semester Examination within seven days from the date of declaration of result.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

- 4. The Institution/University may cancel the registration of all the courses in a given semester if
 - i. The student has not cleared the dues to the institution/hostel.
 - ii. A punishment is awarded leading to cancellation of the student's registration.

X. CURRICULUM MODIFICATION

The curriculum will be updated regularly within a period of 5 to 10 years since last revision, to keep pace with the advancements in the field of Mecharonics.

XI. CENTRAL ADVISORY COMMITTEE

There shall be a Central Advisory Committee consisting of the following-

- a) Dean, Faculty of Technology, Chairman
- b) Dean PGS
- c) Head of Institution
 - d) Heads of Departments running MTech Course

XII. PROGRAME EDUCATIONAL OBJECTIVE

1. Apply mechanical engineering and electrical engineering knowledge and skills to problems and challenges in the areas of mechatronic engineering.

2. Integrate and use systems or devices incorporating modern microelectronics, information technologies and modern engineering tools for product design, development and manufacturing.

3. Demonstrate professional interaction, communicate effectively with team members and work effectively on multi-disciplinary teams to achieve design and project objectives.

4. Engage in lifelong learning in their profession and practice professional and ethical responsibility.

XIII. PROGRAME OUTCOME

By the time they graduate, students will be able :

- 1. to define the problem.
- 2. to employ the basic mathematical skills needed to solve routine engineering problems.
- 3. to demonstrate knowledge of electrical circuits and logic design.
- 4. to implement engineering solutions and techniques to solve design problems
- 5. to demonstrate knowledge of statics, dynamics and solid mechanics relevant to Mechatronics.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

- 6. to design mechatronic components and systems. 2b to select the appropriate mechatronic device for a given application
- 7. to design and conduct experiments and analyze data.
- 8. to apply spreadsheets, computer-based modeling and other computer-based methods to solve mechatronic problems.
- 9. to communicate through writing with others in the field of mechatronics.
- 10. to communicate orally with others in the field of mechatronics.
- 11. to demonstrate team-oriented skills within the field of mechatronics.
- 12. to identify and evaluate ethical ramifications and professional responsibilities in a variety of situations.
- 13. to discuss the impact of engineering on society, safety, and the environment in relation to contemporary issues.
- 14. to exhibit skills for lifelong learning.

SCHEME SEMESTER-WISE COURSE ALLOCATIONFULL-TIME

CODE	ТҮРЕ	COURSE OF STUDY	L	T	T P	C	EVALUATION SCHEME Percentage (Weightage)							
							Theory			Pra	Total			
							CA	MS	ES	Int	Ext			
MTC01	CC	Fundamentals Of Mechatronics	3	0	2	4	15	15	40	15	15	100		
MTC02	CC	Dynamics And Control Systems	3	0	2	4	15	15	40	15	15	100		
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100		
MTD**	ED	Elective #	-	-	-	4	-	-	-	-	-	100		
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100		
EO***	EO	Open Elective#	-	-	-	4	25	25	50	-	-	100		
		TOTAL	18	3	6	24								
			\$											
coarse cod	le will depen	evaluation scheme and d upon student's choice ad will depend upon ele	e of ele	ctive	(s).				n in T	able r	no:3,4.	The		

M.TECH. MECHATRONICS (FT) SEMESTER I

\$ The actual weekly load will depend upon elective(s) chosen by the student.

M.TECH. MECHATRONICS (FT) SEMESTER II

CODE	TYPE	COURSE OF STUDY	L	T	P	C		EVALUATION SC Percentage (Weight					
							The	Theory		Pra	Total		
							CA	MS	ES	Int	Ext		
MTC03	CC	Large Scale Systems	3	0	2	4	15	15	40	15	15	100	
MTC04	CC	Modelling& Simulation	3	0	2	4	15	15	40	15	15	100	
		of Mechatronics Systems											
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100	
MTD**	ED	Elective #	-	-	-	4	-	-	-	-	-	100	
MTD**	ED	Elective #	-	-	-	4	-	-	-	-	-	100	
EO***	EO	Open Elective#	-	-	-	4	25	25	50	-	-	100	
		TOTAL	18	3	6	24							
			\$										
#The LTP	Allocatio	on, evaluation scheme and p	re-rec	quisit	es for	elect	ives ar	e give	n in T	able r	10:3,4.	The	
		pend upon student's choice						-					
\$ The actu	al weekly	y load will depend upon elec	ctive(s) cho	osen l	by the	studer	nt.					

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

M.TECH. MECHATRONICS (FT) SEMESTER III

CODE	ТҮРЕ	COURSE OF STUDY	L	T	P	C	EVALUATION SO Percentage (Weigh						
							The	Theory		Practical		Total	
							CA	MS	ES	Int	Ext		
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100	
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100	
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100	
MTC05	CC	Seminar	0	0	4	2	100	-	-	-	-	100	
MTC06	CC	Major Project	0	0	-	6				40	60	100	
		TOTAL	6	1	-	20							
			\$										
		aluation scheme and upon student's choice				or elec	tives a	re give	en in T	Table 1	no:3,4.	The	

\$ The actual weekly load will depend upon elective(s) chosen by the student.

M.TECH. MECHATRONICS (FT) SEMESTER IV

CODE	ТҮРЕ	COURSE OF STUDY	L	T	Р	C	EVALUATION SCHEME Percentage (Weightage)					
							Theo	ory		Prac	ctical	Total
							CA	MS	ES	Int	Ext	
MTC07	CC	Dissertation	0	0	-	14	-	-	-	40	60	100
		TOTAL	0	0	-	14						

SCHEME OF COURSES - M.TECH. (MECHATRONICS)

SCHEME SEMESTER-WISE COURSE ALLOCATIONPART-TIME

CODE	ТҮРЕ	COURSE OF STUDY	L	T	Р	C	EVALUATION SCHEME Percentage (Weightage)							
							The	ory		Practical		Total		
							CA	MS	ES	Int	Ext			
MTC01 CC	CC	Fundamentals Of	3	0	2	4	15	15	40	15	15	100		
		Mechatronics												
MTC02	CC	Dynamics And	3	0	2	4	15	15	40	15	15	100		
		Control Systems												
EO***	EO	Open Elective#	-	-	-	4	25	25	50	-	-	100		
		TOTAL	9	1	4	12								
			\$											

M.TECH. MECHATRONICS (PT) SEMESTER I

coarse code will depend upon student's choice of elective(s).

\$ The actual weekly load will depend upon elective(s) chosen by the student.

M.TECH. MECHATRONICS (PT) SEMESTER II

CODE	TYPE	COURSE OF STUDY	L	T	Р	C	EVALUATION SCHEME Percentage (Wightage)					
							The	ory		Practical		Total
							CA	MS	ES	Int	Ext	
MTC03	CC	Large Scale	3	0	2	4	15	15	40	15	15	100
		Systems										
MTC04	CC	Modelling&	3	0	2	4	15	15	40	15	15	100
		Simulation of										
		Mechatronics										
		Systems										
EO***	EO	Open Elective#	-	-	-	4	25	25	50	-	-	100
		TOTAL	9	1	4	12						
			\$									
		evaluation scheme and d upon student's choice				r elect	ives ar	e give	n in T	able 1	no: 3,4	. The

\$ The actual weekly load will depend upon elective(s) chosen by the student.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

M.TECH. MECHATRONICS (PT) SEMESTER III

CODE	ТҮРЕ	COURSE OF STUDY	L	T	P	C	EVALUATION SCHEME Percentage (Wightage)					
			Theory		Theory			Pra	ctical	Total		
							CA	MS	ES	Int	Ext	
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100
MTD**	ED	Elective #	-	-	-	4	-	-	-	-	-	100
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100
							-	-	-	-	-	
		TOTAL	9	2	2	12						
			\$									
coarse cod	e will depend	valuation scheme and l upon student's choice d will depend upon ele	e of el	ective	e(s).			-	n in T	able 1	no:3,4.	The

M.TECH. MECHATRONICS (PT) SEMESTER IV

CODE	ТҮРЕ	COURSE OF STUDY	L	T	Γ Ρ C	С	EVALUATION SCHEME Percentage (Wightage)					
						Theory		Theory Practical		ctical	Total	
							CA	MS	ES	Int	Ext	1
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100
MTD**	ED	Elective #	-	-	-	4	-	-	-	-	-	100
MTD**	ED	Elective #	-	-	-	4	-	-	-	-	-	100
		TOTAL	9	2	2	12						
			\$									
		valuation scheme and l upon student's choice				r elect	tives an	e give	n in T	Table 1	no:3,4.	The

\$ The actual weekly load will depend upon elective(s) chosen by the student.

SCHEME OF COURSES - M.TECH. (MECHATRONICS)

M.TECH. MECHATRONICS (PT) SEMESTER V

CODE	TYPE	COURSE OF STUDY	L	T	Р	C	EVALUATION SCHEME Percentage (Wightage)					
							The	ory		Pra	ctical	Total
							CA	MS	ES	Int	Ext	
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100
MTC06	CC	Major Project	0	0	-	6				40	60	100
	TOTAL 6 1 2 14											
			\$									
#The LTP Allocation, evaluation scheme and pre-requisites for electives are given in Table no:3.4. The												

evaluation scheme and pre-requisites for electives are give coarse code will depend upon student's choice of elective(s). \$ The actual weekly load will depend upon elective(s) chosen by the student.

M.TECH. MECHATRONICS (PT) SEMESTER VI

CODE	TYPE	COURSE OF STUDY	L	T	P	C		EVALUATION SCHEME Percentage (Weightage)					
							Theory		Theory Practical		Practical		Total
							CA	MS	ES	Int	Ext	•	
MTD**	ED	Elective#	-	-	-	4	-	-	-	-	-	100	
MTC05	CC	Seminar	0	0	4	2	100	-	-	-	-	100	
MTC07	CC	Dissertation	0	0	-	14	-	-	-	40	60	100	
		TOTAL	0	0	4	20							
			\$										
coarse code	will depend	valuation scheme and upon student's choic d will depend upon e	e of el	ectiv	e(s).			-	en in T	Table r	no:3,4.	The	

\$ The actual weekly load will depend upon elective(s) chosen by the student.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

	TABLE NO: 3LIST OF DI	SCIPLINE CENTRIC ELECTI	VES	5		
CODE	COUSRE OF STUDY	PREREQUISITE	L	Т	P	C
MTD01	Principles of Electronic Devices	Basics of electrical and electronics	3	1/0	0/2	4
MTD02	Sensors and Signal Conditioning	Nil	3	1/0	0/2	4
MTD03	Industrial Robotics	Microcontroller		1/0	0/2	4
MTD04	Microcontroller And Programmable Logic Controllers (PLC)	Nil	3	1/0	0/2	4
MTD05	Industrial Electrical And Electronics	Power electronics	3	1/0	0/2	4
MTD06	Advanced Sensor Systems And Instrumentation	Electrical and electronics Measurement	3	1/0	0/2	4
MTD07	Fluid Power System And Factory Automation	Fundamental of Mechatronics and PLC	3	1/0	0/2	4
MTD08	AI Techniques and Applications	Nil	3	1/0	0/2	4
MTD09	Power Electronics	Circuit analysis, Electron devices and Electronic circuits, and Differential equations	3	1/0	0/2	4
MTD10	Power Electronics & Drives	Basics of Electrical machines and electronics	3	1/0	0/2	4
MTD11	Embedded Sensors And System Design	Digital electronics and measurement	3	1/0	0/2	4
MTD12	Mechatronics system design	Fundamental of Mechatronics and PLC	3	1/0	0/2	4
MTD13	Nano Technology	Applied physics,	3	1/0	0/2	4
MTD14	PC based automation	Microcontroller	3	1/0	0/2	4
MTD15	Industrial Automation	Basic of Manufacturing Systems	3	1/0	0/2	4
MTD16	Computational Techniques For Vibration Analysis And Control	Basic control engineering and measurement	3	1/0	0/2	4
MTD17	MEMS	Basics of electrical machines, control, manufacturing	3	1/0	0/2	4
MTD18	MEMS and NEMS	Basics of physics, chemistry and electronics	3	1/0	0/2	4
MTD19	Design of Hydraulic and pneumatic System	Fundamental of Mechatronics	3	1/0	0/2	4
MTD20	Machine tool control and condition monitoring	Sensors and transducer, electrical machine, control system	3	1/0	0/2	4
MTD21	Robust control	Control systems	3	1/0	0/2	4

_

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

MTD22	Instrumentation & Sensor Technology	Electrical and electronics measurement	3	1/0	0/2	4
MTD23	Introduction to Optimization Techniques	Nil	3	1/0	0/2	4
MTD24	Signal Processing in Mechatronic Systems	Signals and system	3	1/0	0/2	4
MTD25	Fault Detection And Diagnosis	Nil	3	1/0	0/2	4
MTD26	Drives And Controls For Automation	Electrical machine/power apparatus, power electronics	3	1/0	0/2	4
MTD27	Energy Auditing And Management	Nil	3	1/0	0/2	4
MTD28	Evolutionary Computations	Nil	3	1/0	0/2	4
MTD29	Fundamentals Of Electrical Machines And Drives	Basic electrical engineering	3	1/0	0/2	4
MTD30	Power Quality And Harmonics	Power electronics	3	1/0	0/2	4
MTD31	Digital Control Systems	Signal and systems	3	1/0	0/2	4
MTD32	Precision Engineering	Measurement and control system	3	1/0	0/2	4
MTD33	Reliability Engineering	Nil	3	1/0	0/2	4
MTD34	Real Time Systems And Software Development	Nil	3	1/0	0/2	4
MTD35	Concepts In Electronics Engineering	Nil	3	1/0	0/2	4
MTD36	Machine Vision	Analog and digital electronics	3	1/0	0/2	4

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

	TABLE NO : 4	LIST OF OPE	N ELE	CTIVE	S EO**	**				
	LTP Allocati	ion		Evalu	ation S	cheme				
L	Т	Р	CA	MS	ES	Int	Ext			
3	1	0	30	20	50	-	-			
Code	Name of Elective		Pre-Requisites							
EO001	Technical Commun	ication			None					
EO002	Disaster Managemen	nt			None					
EO003	Basics of Finance M	anagement			None					
EO004	Basics of Human Re Management	sources			None					
EO005	Project Management	t			None					
EO006 Basics of Corporate Law					None					
EO007 Biological computing		None								
EO008	Basic of social scien	ce	None							
EO009	Entrepreneurship		None							
EO010	Social work				None					
EO011	IP and Patenting				None					
EO012	Supply Chain Manag and logistics	gement-Planning			None					
EO013	Organization Develo	opment			None					
EO014	Industrial Organisat Economics	ion and Managerial			None					
EO015	Global Strategy and	Technology			None					
EO016	Engineering System Design	Analysis and	None							
EO017	Biology for Engine	gy for Engineers		None						
EO018	Energy, Environmen	nt and Society	None							
EO019	Public Policy and G	overnance	None							

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

COURSE CONTENTS OF CORE COURSES

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTC01	FUNDAMENTALS OF	3L-0T-2P	4	None
	MECHATRONICS			
Course Outcome:				

To expose the learner to the fundamentals of hydraulic and pneumatic power control and their circuits with industrial applications.

Course Contents:

UNIT I - HYDRAULIC COMPONENTS: Introduction to fluid power system-Pascal's Law- Hydraulic fluids-Hydraulic pumps- Gear, Vane and Piston pumps- Pump Performance- Characteristics and Selection-actuatorsvalves-pressure control- flow control and direction control valves- Hydraulic accessories- Hydraulic Accumulator.

UNIT II - PNEUMATIC COMPONENTS: Introduction to Pneumatics- Compressors- types-. Air treatment-FRL unit- Air dryer- Control valves- Logic valves-Time delay valve and quick exhaust valve- Pneumatic Sensors – types-characteristics and applications.

UNIT III - FLUID POWER CIRCUITS: Circuit Design Methodology- Sequencing circuits- Overlapping signals-Cascade method- KV Map method-Industrial Hydraulic circuits- Double pump circuits- Speed control Circuits-Regenerative circuits- Safety circuits- Synchronizing circuits- Accumulator circuits.

UNIT IV - ELECTRO- PNEUMATICS AND HYDRAULICS: Relay, Switches- Solenoid- Solenoid operated valves- Timer- Counter- Servo and proportional control- Microcontroller and PLC based control- Design of electropneumatic and hydraulic circuits

UNIT V – PLC: Evolution of PLC's - Sequential and programmable controllers - Architecture-Programming of PLC. Pelevilence - Lodden Logic - Cotes Flip flows and Timeser

PLC - Relay logic - Ladder logic - Gates, Flip flops and Timers.

UNIT VI - COMMUNICATION IN PLC's: Requirement of communication networks of PLC - connecting PLC to computer - Interlocks and alarms - Case study of Tank level control system and Sequential switching of motors.

Suggested Readings:

- 1. John Pippenger, "Hicks, Industrial Hydraulics", McGraw Hill International Edition
- 2. AndrewParr, "Hydraulics and pneumatics", Jaico Publishing House.
- 3. Perter Croser, Frank Ebel "Fundamentals of Pneumatics", FESTO
- 4. Petrezeulla, "Programmable Controllers", McGraw Hill
- 5. Hughes .T, "Programmable Logic Controllers", ISA Press
- 6. Curtis D. Johnson "Process Control Instrumentation" Prentice Hall
- 7. Anthony "Esposito, Fluid Power with applications", Prentice Hall
- 8. Majumdar .S.R, "Oil Hydraulics", Tata McGraw Hill
- 9. Majumdar S.R, "Pneumatic systems principles and maintenance", Tata McGraw Hill

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite				
MTC02	Dynamics And Control	3L-0T-2P	4	None				
	Systems							
Course Outcome:								
• To understand dynamics, design and analysis of control systems to meet the desired Specifications								
Course Contents:								
UNIT I - SYSTEM REPRESENTATION AND MODELLING								
Introduction and need for Control Systems with examples - Open loop and Closed loop systems - Transfer Function								
Model State Space Model Mathematical Modelling of Machanical Electrical Proventic and Hydraulic systems								

Model – State Space Model – Mathematical Modelling of Mechanical, Electrical, Pneumatic and Hydraulic systems – Block Diagram reduction – Signal flow graph.

UNIT II - DESIGN OF FEEDBACK CONTROL SYSTEM

Feed back systems – Block Diagram – Definition of Process variable, Set-point, Manipulated variable and Final control element with examples – Characteristics of on-off, P, PI, PD and PID Controllers – Implementation issues of PID Controller – Modified PID Controller – Tuning of controllers.

UNIT III - TIME DOMAIN ANALYSIS

Time response of First & Second order systems – Time domain specifications - steady state errors and error constants – Routh Hurwitz criterion – Root locus – Root locus approach to control system design – Lead, Lag, Lag-Lead Compensation using time domain analysis.

UNIT IV - FREQUENCY DOMAIN ANALYSIS

Bode Plot – Polar Plot – Nyquist stability criterion – Stability analysis – Experimental determination of Transfer Functions – Control system design using Frequency domain analysis - Lead, Lag, Lag-Lead Compensation using frequency domain analysis.

UNIT V - CASE STUDY ON CONTROL AND ANALYSIS OF SERVO MOTOR

Servo motor – Mathematical Modelling of Servo Motor – Analysis of Servo motor system using Routh Hurwitz criterion, Root locus, Bode Plot, Polar Plot and stability analysis – Implementation of P, PI, PD and PID controllers for servo motor and analysis.

Suggested Readings:

- 1. K.ogata, :Modern Controls Engineering "Prentice Hall of India Pvt. Ltd.,
- 2. B.C. kuo, "Automatic Control Systems", Prentice Hall of India Pvt. Ltd.
- 3. I.J.Nagrath and Gopal. "Control System Engineering", New Age International (P) Ltd.
- 4. A. NagoorKani, "Control Systems", RBA publications (P) Ltd.
- 5. M.Nakamura .S.Gata &N.Kyura, "Mechatronic servo system control", Springer.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTC03	Large Scale Systems	3L-0T-2P	4	None
Course Outcome:				

• To understand dynamics, design and analysis of control systems to meet the desired Specifications

Course Contents:

UNIT I - L.S.S. Modelling: Time Domain

Introduction, Aggregation methods, exact and model aggregation by continued fraction, **chained** aggregation descriptive variables approach, descriptive variable systems, solvability and conditionality, time invariance, shuffle algorithm.

UNIT II - L.S.S. Modelling - Frequency Domain

Introduction, Moment matching, Pade approximation, Routh approximation, continued fraction method, error minimization methods, mixed methods and unstable systems, Pade model method, Pade-Routh method, multi input and multi output systems, reduction, matrix continued fraction method, Model continued fraction method, Pade model method, frequency comparison method.

UNIT III - Time Scales and Singular Perturbations

Introduction, problem statement and preliminaries, numerical algorithm, basic properties, relation to model aggregation, feedback control design, singularly perturbed linear systems, fast and slow sub systems, eigenvalue distribution, approximation to time scale approach, system properties, design of optimal controllers, fast and slow controllers, lower order controls.

UNIT IV - Stable Routh - Pade Model Reduction of Interval systems

Introduction, Interval Routh table computation, Stable Routh-Pade model reduction of interval system: the Pade approximation, Kharitonov robust stability theory, problem formulation, moment matching in the stable Routh-Pade model reduction interval systems, stable reduction of interval denominator using kharitonov polynomials, the procedure for stable Routh-Pade model reduction of interval systems; numerical examples related to study.

Suggested Readings:

- 1. Mohammad Jamshidi, "Large Scale Systems Modelling and Control", Elsevier Science Ltd
- 2. Magdi S. Mohamoud and Madan G. Singh, "Large Scale Systems Modelling', North Hollard (Series in systems science and engineering.
- 3. Prashant Shingare, B.Bandyopadhyay, H.L. Abhyankar, "Model Reduction Techniques using Interval Analysis and Optimization with control system applications", VDM Verlag.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTC04	Modelling & Simulation of Mechatronics Systems	3L-0T-2P	4	None
Course Outcome:				

• To understand modelling and simulation of mechatronics systems to meet the desired specifications

Course Contents:

UNIT I - Physical Modelling: Mechanical and electrical systems, physical laws, continuity equations, compatibility equations, system engineering concept, system modelling with structured analysis, modelling paradigms for mechatronic system, block diagrams, mathematical models, systems of differential-algebraic equations, response analysis of electrical systems, thermal systems, fluid systems, mechanical rotational system, electrical-mechanical coupling.

UNIT II - Simulation Techniques: Solution of model equations and their interpretation, zeroth, first and second order system, solution of 2nd order electro-mechanical equation by finite element method, transfer function and frequency response, non-parametric methods, transient, correlation, frequency, Fourier and spectra analysis, design of identification experiments, choice of model structure, scaling, numeric methods, validation, methods of lumped element simulation, modelling of sensors and actuators, hardware in the loop simulation (HIL), rapid controller prototyping, coupling of simulation tools, simulation of systems in software (MATLAB, LabVIEW) environment.

UNIT III - Modelling and Simulation of Practical Problems:

- Pure mechanical models
- Models for electromagnetic actuators including the electrical drivers
- Models for DC-engines with different closed loop controllers using operational amplifiers
- Models for transistor amplifiers

Suggested Readings:

- 1. V. Giurgiutiu and S. E. Lyshevski, "Micromechatronics: Modeling, Analysis, and Design with MATLAB", Chemical Rubber Company (CRC).
- 2. L. Ljung, T. Glad, "Modeling of Dynamical Systems", Prentice Hall Inc.
- 3. D.C. Karnopp, D.L. Margolis and R.C. Rosenberg, "System Dynamics: A Unified Approach", John Wiley & Sons Inc.
- 4. G. Gordon, "System Simulation", Prentice Hall India

COURSE CONTENTS OF DISCIPLINE CENTRIC ELECTIVES

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
MTD01	Principles Of Electronic	3L-0T-2P	4	None		
	Devices					
Course Outcome: On completion of the course, the students will be able to						
• acquire the k	nowledge of analog and digital dev	ices				
• Understand the	he wide applications of these devic	es				
Course Contents: UNIT I: Review Sem	iconductor devices: Two terminal of	levices – BJT, JF ET, 1	MOSFET, Fou	r terminal devices,		
SCR, DIAC, TRIAC -	- Photo devices:- Photo diode – Ph	oto transition, LED, LO	CD.			
UNIT II: Amplifier – Transistor as an amplifier, BJT, FET amplifier (qualitation study) – single stage, multistage						
Power Amplifiers – cl	ass A, B, C and D Amplifiers.					
UNIT III: Operationa	amplifiers - Introduction op-amp	Specification and char	acteristics, Ap	plication – constant		
gain, voltage summing	g, voltage Buffer, Instrumentation of	circuits, Active Filters.				
UNIT IV: Introductio	n to computing – Number, system	and code conversion, I	logic gates – B	oolean algebra –		
Combinational circuit	design, Sequential circuit - Flip flo	ops – RS, JK, T,D, Cou	inters, Shift reg	gisters.		
	UNIT V: Qualitative Study & Interfacing Concepts - Decoder, Encoder, MUX, DEMUX, Memories – RAM, ROM, PROM, EPROM, EEPROM, Programmable logic devices.					
Suggested Readings:	dested "Electronic desire" 9 O		7.4			
-	1. Robert L Boylested, "Electronic devices & Circuit theorem", Pearson Education					
2. Floyd, "Digit	al Fundamental, Pearson Education	n				
3. Floyd, "Elec	3. Floyd, "Electronic Devices", Pearson Education					
4. Albert Paul N	4. Albert Paul Malvino, "Electronic Principle", Tata McGraw Hill.					

Cours	e No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD02		Sensors And Signal	3L-0T-2P	4	None
		Conditioning			
Course Outcon		f this course the student shall be	ablatar		
		owledge on various types of s		rs for Autom	ation in Mechatronic
Engine	ering.	6 71			
Course Conten UNIT I INTRO		ION			
Basics of Measu	ırement	- Classification of errors - Error	analysis – Static and d	lynamic charac	eteristics of transduce
- Performance	measure	es of sensors - Classification of	f sensors – Sensor cal	ibration techni	ques – Sensor Outp
Signal Types					
UNIT II MOT	ION, PF	ROXIMITY AND RANGING S	SENSORS		
Motion Sensors	– Brusl	h Encoders, Potentiometers, Res	olver, Encoders – Opti	cal, Magnetic,	Inductive, Capacitiv
LVDT – RVD1) – Sync	hro –Microsyn , Accelerometer.	,- GPS, Range Sensor	s – RF beacon	s, Ultrasonic Ranging
Reflective beac	ons, Las	er Range Sensor (LIDAR)			
UNIT III FOR	CE, MA	AGNETIC AND HEADING SE	NSORS		
Strain Gage, Lo	oad Cell	Magnetic Sensors –types, princi	ple, requirement and a	dvantages: Ma	agneto resistive – Ha
effect- Current	sensor F	Ieading Sensors – Compass, Gyr	oscope, Inclinometers		
UNIT IV OPT	ICAL, F	PRESSURE AND TEMPERAT	URE SENSORS		
Photo conductiv	ve cell, j	ohoto voltaic, Photo resistive, LI	DR – Fiber optic senso	rs – Pressure -	- Diaphragm, Bellow
	-	ure – IC, Thermistor, RTD, Ther	-		
UNIT V SIGN	-		1		
		tioning – DC and AC Signal	conditioning – Filter a	and Isolation	Circuits – Operation
_		s, Characteristics and Circuits –	-		-
		Acquisition System.	5	1	8
Suggested Rea		1 5			
		'Sensor and Actuators", Prentice	Hall of India (Pvt) Ltd.		
2. Ernest	O. Doeł	olin, "Measurement system, Appl	lication and design" Ta	ta McGraw Hi	ll Publishing
Compa	ny Ltd.,				
3. Bradle	y D.A., a	and Dawson, Burd and Loader, "	Mechatronics", Thoms	on Press India	Ltd.
4. Rengai	nathanS.	, "Transducer Engineering", Alli	ed Publishers (P) Ltd.		
	W Me	chatronics, Thomson Press.			

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD03	Industrial Robotics	3L-0T-2P	4	None
Course Outcome:				
Upon completion	of this course the student shall be	e able to:		
To impart know	owledge in the area of mechanica	l design, sensors and pro	gramming of i	ndustrial robots.
Course Contents: UNIT I INTRODUC	TION			
Types of Industrial Ro	obots, definitions - classification	s based on work envelo	pe – Generatio	ons configurations and
control loops, co-ordir	nate system – need for robot – bas	sic parts and functions –	specifications.	
UNIT II MECHANI	CAL DESIGN OF ROBOT SYS	STEM		
Robot motion - Kine	matics of Robot motion – Direct	ct and Indirect kinemat	ics Homogene	ous transformations -
linkages and joints –	mechanism – method for location	n and orientation of obje	ects –drive syst	tems – end effectors -
6 3	fication and design of grippers –	5	,	
UNIT III SENSORS		811		
	- Position and proximity's sens	ing _ tactile_sensing _ (sensing joint f	orces _vision system-
	l image transformation – safety	•		•
	i image transformation – safety	monitoring sensor syste	ins –inage and	arysis – application o
image processing.				
UNIT IV ROBOT PH	ROGRAMMING & AI TECHN	IQUES		
Types of Programmin	g – Teach pendant programming	- Basic concepts in A1	techniques - 0	Concept of knowledge
representations - Expe	ert system and its components.			
UNIT V ROBOTIC V	WORK CELLS AND APPLICA	ATIONS OF ROBOTS		
Robotic cell layouts	- Inter locks - Humanoid rol	bots – Micro robots –	Application	of robots in surgery
Manufacturing industr	ies, space and underwater.			
Suggested Readings: 1. Groover.M.P	., "Industrial Robotics, technolog	gy, programming and ap	plication", M	c-Graw Hill book an

- 1. Groover.M.P., "Industrial Robotics, technology, programming and application", Mc-Graw Hill book and co.
- 2. Fu.K.S ,Gonzalac R.C ,Lee C.S.G, "Robotics Control, sensing ,vision and intelligence", Mc- Graw Hill book co.
- 3. YoramKoren, "Robotics", McGraw Hill.
- 4. Janakiraman P.A. "Robotics and Image Processing", Tata McGraw Hill.
- 5. Saeed B.Niku, "Introduction to Robotics, Analyses, Systems, Applications", Prentice Hall Pvt Ltd.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD04	Microcontroller And	3L-0T-2P	4	None
	Programmable Logic			
	Controllers (PLC)			
Course Outcome: Upon completion	of this course the student shall be	able to:		
• To understan	d the programming interfacing an	d applications of variou	s microcontrol	lers and programmable
logic control	ler.			
Course Contents: UNIT I INTRODUC	CTION TO MICRO CONTRO	LLER: Microprocesso	rs and Microc	ontrollers – CISC and
RISC - Fundamental	s of Assembly language Program	mming – Instruction to	o Assembler	- C Programming for
Microcontrollers – C	Compiler and IDE –Introduction	to Embedded systems	- Architectu	re 8051 family - PIC
18FXXX – family – N	Memory organization			
-	MMING OF 8051 MICROCO	NTROLLER: Instruct	ion set – Ad	dressing modes – I/O
	Counter - Interrupts – Serial comm			C
UNIT III PROGRA	MMING OF PIC18FXXX MIC	ROCONTROLLER:	Instruction set	- Addressing modes -
I/O Programming-Ti	mer/Counter - Interrupts – Ser	rial communication,CC	CP, ECCP PV	WM programming of
PIC18FXXX.	-			
UNIT IV PERIPHE	RAL INTERFACING: Interfacing	ng of Relays, Memory,	key board, Di	splays – Alphanumeric
and Graphic, RTC, Al	DC and DAC, Stepper motors and	DC Motors, I2C, SPI w	rith 8051 and F	PIC family
-	GRAMMING: Fundamentals of			-
	on of the modern PLC – Memory-			
-	- Developing Fundamental wirin			
1 0 0	Cs – Programming Timers – Progr	0 0	0 0	6 6
Suggested Readings:				
	Ali Mazidi and Janice GillispicM	lazdi, "The 8051 Micro	ocontroller and	d Embedded Systems"
Pearson Educe 2. John B. Peat	man, "PIC Programming", McGra	w Hill International. US	SA.	
	man, "Design with Micro controlle			
4. Kenneth J. A Learning.	ylala, "The 8051 Micro controlle	er, the Architecture and	Programming	applications", Delmar
0	Stars at %The 2051 Minute	4 11 1 L	0 1	• • • • •

- 5. James W. Stewart, "The 8051 Micro controller hardware, software and interfacing, regents **Regents**/Prentice Hall.
- 6. Frank D. Petro Zella, "Programmable Logic Controller" McGraw Hill Publications.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite					
MTD05	Industrial Electrical	3L-0T-2P	4	None					
	and Electronics								
	Course Outcome: Upon completion of this course the student shall be able to:								
				L .					
	basic electrical engineering along v			l ū .					
1. Know about c	lifferent electronics and power electronics	ctronics devices applica	ations.						
2. Know about c	lifferent controllers and their appli	cations.							
Course Contents:	al Engineering, AC & DC Motor	harastaristics. Speed a	ontrola Startin	a principles Selection					
		characteristics, speed c	onnois, Startin	ig principies, selection					
of proper motors for va	11	10	· ,						
	trical Machines:- Induction gene		-						
	ferent methods of voltage control,								
UNIT-II:Doubly fed	induction machines:- control via	a static converter, pov	ver flow, volt	age/frequency control					
(generation mode), app	plication to grid connected wind an	nd mini/micro hydel sys	stems.						
Switched Reluctance	Motor: Construction, operating	performance, contro	l and applica	ations. Brushless DC					
Machines: construction	n operation, performance, control a	and applications.							
UNIT-III:Linear Ma	chines:- Linear Induction Mach	nines and Linear Syn	nchronous Ma	chines. Construction,					
operation, performance	e, control and applications. Applications	ation of permanent mag	gnets in electri	cal machine:-structure,					
magnetic materials us	ed, types of motors e.g. PMDC	and PM Synchronous	Machine, con	ntrol and applications.					
Recent developments i	n electrical machines.								
UNIT-IV:Basic Elect	ronics, Diodes, Transistor configu	urations, SCR Controls	s, FET, UJT,	A/D Conversion, D/A					
Conversion, Optoelect	tronic devices: photo diode/transi	stor, LDR, LED and	LCD and PLA	ASMA displays, opto-					
coupler, opto-interrupt	ter, high speed detectors - PIN an	nd avalanche photo dio	des, DC Powe	r Supplies, AC Power					
Supplies, Special operation	ational amplifiers, Timing and cou	nting circuits							
UNIT-V:Digital Contr	UNIT-V:Digital Control Theory :- Basic Digital concepts, Structure of a computer controlled system. Review of Z-								
transform. Computation	on of time response of Discrete	Data system.BillnearT	ransformation.	Wplane, prewar ping,					
inverse transformation	.Design of discrete controllers. Z-	domain compensation,	wplane compo	inverse transformation. Design of discrete controllers. Z-domain compensation, wplane compensation, state variable					

feed back, deadbeat controller sampled data version of PID controllers. Effect of Data Digitization.Effect of finite word size, limit cycle determination. Programmable logic devices: PLA, PLD, CPLD, FPGA and its application.

Suggested Readings:

- P. S. Bimbra, "Electrical Machines", Khanna 1.
- P. S. Bimbra, "Power Electronics", Khanna 2.
- Sedra Smith, "Micro Electronics", Oxford University Press 3.

Course N	0.	Title of the Course	Course structure	Credit	Pre-Requisite	
MTD06	5	Advanced Sensor	3L-0T-2P	4	None	
		Systems and				
		Instrumentation				
Course Outco						
• On co	ompletion	of this course the students will	be able to Identify the m	lost suitable m	ethod of sensing and	
transc	duction fo	or an application design an instru	umentation and associate	ed data acquisit	ion system	
Course Conte						
UNIT I: Basic	e Concep	ts of Measurements and character	eristics of an Instrumenta	ation System: S	System configuration –	
Problem analy	ysis – Ba	sic characteristics of measuring	g devices – Calibration	- Generalized	measurements-Zero	
order, First ord	der, Seco	nd order system – Dead time ele	ment.			
UNIT II: Ser	nsors and	Transducers – 1 : Electromec	hanical sensors – Resis	tance type – l	Potentiometer – Strain	
gauge – Resist	tance ther	mometer – RTD – Inductance ty	ype – Capacitance type –	- Piezo Electric	e type.	
UNIT III: Se	nsors and	Transducers -2 : Magnetic se	nsors – NMR – MRI –	Fiber optic set	nsors –Opto electronic	
sensors – CCD) – Digita	l transducers.				
UNIT IV: An	alog and	Digital Instrumentation : Operation	ational Amplifiers – Sig	nal generation	- Signal processing -	
Filtering and s	ignal ana	lysis.				
UNIT V: Data	a Acquisi	tion, Conversion, Transmission	and Processing : Signal	l Conditioning	of the inputs – Single	
channel and M	Multichan	nel data acquisition – Data co	nversion – Multiplexers	s – Sample and	d hold circuits – Data	
transmission s	transmission systems – Pulse code formats – Modulation techniques – Telemetry system.					
Suggested Res 1. Nube		"Instruments Transducers", Th	e Clarendon Press			
2. C.S. I	Rangan, (G.P. Sarma, V.S.V. Mani "Instru	umentation devices and s	ystem", Tata N	AcGraw Hill.	
3. Ernes	st . O. Do	ebelin ,"Measurement System A	Application & Design", T	ata McGraw H	Iill	

4. Oliver F.G, "Practical Instrument Transducers", Pitman Publishing Co.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite	
MTD07	Fluid Power System And Factory Automation	3L-0T-2P	4	None	
 Course Outcome: On completion of this course the students will be able to acquire knowledge of the applications of fluid 					

power in various engineering fields work with PLC and understand its application in industry.

Course Contents:

Unit I Introduction to Fluid Power

Definition- Hydraulics Vs Pneumatics – ISO symbols-Application –Pascal's Law-Transmission and multiplication of force-Basic properties of hydraulic fluids- static head pressure-pressure loss – Power- absolute pressure and Temperature- gas laws- vacuum hydraulic power supply source- pneumatic power supply source.

Unit II Control Components and Basic Circuits

Cylinders-accumulators –FRL-Directional control Valves- Pressure control valves-Flow control Valves-electronic control components- DCV controlling single acting, double acting cylinder-counter balance circuit-Fail safe circuit-AND and OR valve circuit-regenerative circuit-meter in and meter out circuit-pressure intensifier circuit-accumulator circuits etc.

Unit III Design of Fluid power circuit

Design method consideration for sequential circuits-intuitive circuit design method-cascade method- sequential logic circuit design using KV method- compound circuit design-step counter design

Unit IV Factory Automation

Introduction- automation principle and strategies-basic elements of an automated system advanced automation function-levels of automation-automation and control techniques continuous Vs discrete control- introduction to control component using PLC

Unit V Programmable Logic controller:

Introduction-architecture-hardware components-Basics of PLC programming-programming timers-programming

counters-master and jump controls-Data manipulation instructions

Suggested Readings:

- 1. James L.Johnson, "Introduction to Fluid power" Delmar Thomson Learning inc.
- 2. Antony Esposito, "Fluid power system and control", Prentice hall.
- 3. Peter Rohner, "Fluid power logic circuit design", The Macmillan press.
- 4. M.P Groover, "Automation production systems and cam", Prentice hall.
- 5. D. A. Bradley, D.Dawson, N.C. Burd, A.J. Loader, "Mechatronics", Nelson Thrones.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD08	AI Techniques and Applications	3L-0T-2P	4	None
Course Outcome: Upon completion	of this course the student shall be	able to:		
• To impart kn	owledge on AI and its application	s in engineering field.		
Course Contents:				
	Intelligence: Definition, probl	-	-	echniques, knowledge
	ing methods, predicate logic, pred	-	e	
UNIT II Fuzzy Logi	c: Crisp sets, fuzzy sets, fuzzy se	t operations, properties	, membership	functions, measures o
fuzziness, fuzzificatio	on and defuzzification methods, for	uzzy relations, operatio	n on fuzzy re	lations, fuzzy number
and arithmetic, fuzz	y implications, approximate rea	soning, systems based	l on fuzzy r	ules, fuzzy inference
Application of fuzzy-	logic to engineering problems, Fuz	zy Control Systems, fa	ult diagnosis et	tc.
UNIT III Artificial N	Neural Network: Introduction, Biol	logical foundation, math	nematical mod	el of biological neuror
types of activation fur	nction, feed-forward and feedback	ANN models.		
UNIT IV Learning	Paradigms: Supervised and unsuj	pervised learning, learn	ing rules, sing	le layer and multilaye
perceptron model, en	ror back propagation learning a	lgorithm, pattern class	ification, clus	tering, Kohonen self
organizing feature m	ap, radial basis function network	, support vector mach	ines, Hopfield	l network, Associativ
memory and BAM, ap	pplications of ANN models to eng	ineering problems.		
UNIT V Evolutionar	y Techniques:Introduction and co	oncepts of genetic algori	thms and evol	utionary programming
UNIT VI Hybrid S	ystems: Neuro-fuzzy systems, a	daptive neuro-fuzzy in	ference syster	n, evolutionary neura
networks, fuzzy evolu	tionary systems, Neuro-Genetic, C	Genetic-Fuzzy systems		
Some Practical applic	ations			
Suggested Readings:				
	Artificial Intelligence and Intellige S. and Pai G.A.V., "Neural Net 2. PHI.			
	a C "Nound Euggy Systems" Dr		1 T	

- 3. Lin C. and Lee G., "Neural Fuzzy Systems", Prentice Hall International Inc.
- 4. Goldberg D.E. "Genetic Algorithms in Search Optimization & Machine Learning", Addition Wesley Co.
- 5. Kosko B., "Neural Networks & Fuzzy Systems A dynamical systems approach to machine intelligence", Prentice Hall of India.
- 6. Ronald R. Yager and Dimitar P. Filev, John, "Essentials of Fuzzy Modeling and Control" Wiley & Sons Inc.
- 7. T. Terano K Asai and M. Sugeno, "Fuzzy System Theory and its applications", Academic Press.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

Course No.

Pre-Requisite

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course structure

Credit

Title of the Course

0041501101	The of the course	course structure	e. vuit			
MTD09	Power Electronics	3L-0T-2P	4	None		
Course Outcome:						
• This course p	• This course prepares students to work professionally in the area of power and power related fields.					
• Students will	have good understanding of the ba	asic principles of switch	n mode power o	conversion		
• Students will	be able to apply knowledge of m	athematics and engine	ering, and ider	ntify formulas to solve		
power and po	ower electronics engineering proble	ems.				
• Students will	be able to choose design appropria	ate power converter top	ologies.			
Course Contents: UNIT I: Power sen	niconductor switches: SCRs -	series and parallel co	onnections, dr	river circuits, turn-on		
characteristics, turn of	f characteristics.					
UNIT II: AC to DO	C converters: Natural commutation	on, single phase and	three phase b	oridge rectifiers, semi		
controlled and fully co	ontrolled rectifiers, dual converters	, inverter operation.				
UNIT III: DC to DC	converters: Voltage, Current, loa	d commutation, thyrist	or choppers, d	lesign of commutation		
elements, MOSFET/IC	GBT choppers, AC choppers.					
UNIT IV: DC to AC converters: Thyristor inverters, McMurray-Mc Murray Bedford inverter, current source						
inverter, voltage control, inverters using devices other than thyristors, vector control of induction motors.						
UNIT V: AC to AC converters: Single phase and three phase AC voltage controllers, integral cycle control, single						
phase cyclo-converters	phase cyclo-converters - effect of harmonics and Electro Magnetic Interference (EMI).					
UNIT VI: Application	ns in power electronics: UPS, SMP	S and Drives.				

Suggested Readings:

- 1. Rashid M. H, *Power Electronics Circuits, Devices and Applications*, 4th Edition, Prentice Hall, New Delhi, 2013.
- 2. Dubey G. K, Doradla S.R, Joshi and Sinha R.M, *Thyristorised Power Controllers*, New Age International Publishers, New Delhi, 2010.
- 3. John G. Kassakian, Principles of Power electronics, Addison Wesley, 1991

Reference Books

- 1. VedamSubramanyam K, "Power Electronics", New Age International Publishers.
- 2. Mohan, Undeland and Robbins, Power Electronics: Converters, Applications, and Design", John Wiley and Sons.
- 3. Joseph Vithyathil, "Power Electronics", McGraw Hill.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite			
MTD10	Power Electronics &	3L-0T-2P	4	None			
	Drives						
Course Outcome:							
On completion	on of this course the students will b	be able to design and co	ntrol various d	lrives and motors			
develop a rea	l time controller for various proces	ss applications.					
Course Contents: UNIT I Introduction	: Introduction to power electroni	ics – Power electronics	versus linear	electronics- review of			
thyristers- power FE'	TS – turn on and off circuits –	Microprocessor based	firing circuits	s – series and parallel			
operation -protection	circuits – design of snubber circuit	ts – ratings and protecti	on				
UNIT II Converters	and inverters: Analysis of half c	ontrolled and fully cont	trolled convert	ers – dual converters –			
Analysis of voltage so	urce and current source – Current	source and series conve	erters				
UNIT III Industrial	Motor Control: Methods of con	ntrolling speed – Induc	tion and DC	Motor controls- use of			
Microcontroller for sp	eed control – Feedback and Feed	forward control - Step	-up and step-d	own choppers – use of			
choppers - Frequency	converters and cyclo converters						
UNIT IV Relays, Hea	at and Welding: Electronic relays	s – operating principles	– torque produ	ction types – induction			
and dielectric heating	- effect of frequency power requi	rement – Resistance we	elding, princip	le and control – timing			
sequence Analysis and	l design of switched mode power s	supplies – UPS					
UNIT V Process Co	ontrollers: Elements of process	control – process cha	racteristics –	ON – OFF control –			
Proportional and Deriv	vative control – electronic controll	ers – pneumatic control	lers – tempera	ture, flow and pressure			
control- voltage regulators – principle of digital control.							
Suggested Readings: 1. R. Ralph Ber India.	nediet and Nathan Weiner, "Indus	strial electronics circuit	s and applicat	ions", Prentice Hall of			

- 2. P.C Sen, "Principles of Electric Machines and Power electronics" John Wiley & Sons Inc.
- 3. Harrott, P, "Process Control", Tata McGraw Hill.
- 4. Joseph Vithayathil, "Power electronics: Principle and Applications", McGraw Hill.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD11	Embedded Sensors and	3L-0T-2P	4	None
	System Design			
Course Outcome: COURSE OUTCOM	ſE			
Upon completion	of this course the student shall be	able to:		
• Understand a	and to apply a design methodology	for dedicated computer	-based System	n
• Appreciate	the considerations of design-sp	pecification, techno	logical choic	e, the Development,
maintenance	, extensibility and also the im	portance of extensib	ility and als	o the importance of
electromagne	etic compatibility			
• Comprehend	the fundamental building blocks	s of such systems (ser	nsors, actuator	rs, Signal conditioning
electronics, j	processors, interfaces AND SOFTV	WARE DESIGN & Cor	struction tech	niques) and their inter-
relationships				
• To demonstr	ate practical competence in these a	reas		
Course Contents: UNIT I: Introduction	on: Embedded computing - charac	cteristics of embedded	computing ap	plications - Embedded
system design challen	ges- constraint - driven - IP - based	l design - hardware- so:	ftware co-desig	gn
UNIT II: Developme	ent Environment: The Execution	Environment - Memory	Organization	- System Space- Code
space - data space - U	Inpopulated Memory Space - I\P S	pace- system Start-up-	Interrupt Resp	oonse Cycle – Function
CALLS AND Stack H	Frames - Run - Time Environment -	- Object Placement.		
UNIT III: Embedde	ed Computing Platform: CPU bu	us - memory devices -	I\O devices- o	component interfacing
designing with microp	processors - development and debu	gging - design example	e- Design patte	erns - dataflow graphs
assembly and linking	- basic compilation techniques - an	alysis and optimization	l	
UNIT IV: Distribut	ed Embedded System Design: I	nter- process commun	ication - signa	als - signals in UML ·
shared memory comm	nunication - accelerated design - de	esign for video accelera	tor - networks	for embedded systems
- networks based desi	gn - Internet enabled systems			
UNIT V: Design Te	chniques: Design methodologies a	and tools - design flow	s - designing	hardware and software
components - require	ment analysis and specification - s	ystem analysis and arcl	nitecture desig	n – system integration

structural and behavioral description- case studies.

Suggested Readings:

- 1. Wayne Wolf, "Computers as Components, Principles of Embedded Computer Systems Design", Morgan Kaufman publishers.
- 2. Jean J. Labrosse, "Embedded system Building blocks; complete and ready-to-use modules in C" CRC Press.
- 3. Arnold S.Berger, "Embedded Systems Design; an Introduction to Processes, Tools and Techniques", CRC Press.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD12	Mechatronics System	3L-0T-2P	4	None
	Design			
Course Outcome: Upon completion of this course the student shall be able to: • To impart knowledge in the area of system design in an integrated approach.				
Course Contents: UNIT I INTRODUC	TION			
Mechatronic systems – Key elements – Mechatronic design process – Application types – Interfacing issues – Ma				
Machine Interfaces – Safety features – optimization of Mechatronic design – Fault diagnosis.				
UNIT II SYSTEM MODELLING AND IDENTIFICATION				

Mathematical models - Block diagram modelling - Analogy approach - Impedance diagrams - Models for Electrical, Mechanical, Electro-mechanical and Fluid systems – System Identification – Least square method-Closed loop identification - joint input/output identification - State estimators - Model Validation

UNIT III SIMULATION

Simulation basics - Probability concepts in simulation - Discrete event simulation - Simulation Methodology -Queuing system model components - Continuous system modelling - Monte Carlo simulation - Analysis of simulation results - Simulation life cycle.

UNIT IV CASE STUDY ON BASIC SYSTEMS

Mass-Spring-Oscillation and Damping system – Position Control of Permanent magnet DC motor using Hall sensor and optical encoder - Auto-control system for Green House Temperature - Transducer Calibration system - Strain Gauge Weighing system – Solenoid Force-Displacement Calibration system.

UNIT V CASE STUDY ON ADVANSED SYSTEMS

Automatic Washing Machine - Hard Drive control - Auto-focusing in Digital Cameras - Active suspension in vehicles - Visual Servoing models - Thermal cycle fatigue of a Ceramic plate - pH Control system - De- icing temperature control system - Skip control of a CD player - Simulation of Rocket thrust control - Time delay Blower.

Suggested Readings:

- 1. Devadas Shetty, Richard A.Kolkm, "Mechatronics system design, PWS publishing company.
- 2. Bolton, "Mechatronics - Electronic control systems in mechanical and electrical engineering", Addison Wesley Longman Ltd., 2009.
- Brian morriss, "Automated manufacturing Systems Actuators Controls, sensors and Robotics", McGraw 3. Hill International Edition.
- 4. Bradley, D. Dawson, N.C.Burd and A.J. Loader, "Mechatronics: Electronics in product and process", Chapman and Hall, London.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD13	NANO Technology	3L-0T-2P	4	None
Course Outcome:				
1 1	of this course the student shall be		·	- f
	ne students to expect to the trens stems to nano scale.	ids in development and	synthesizing	of nano systems and
Course Contents:				
UNIT I OVER VIEW	W OF NANOTECHNOLOGY:	Definition – historical d	levelopment –	properties, design and
fabrication Nanosyste	ms, working principle, application	ons and advantages of r	anosystem.Na	nomaterials - ordered
oxides – Nano arrays -	- potential health effects			
UNIT II NANODEF	ECTS, NANO PARTILES ANI	NANOLAYERS : Na	nodefects in cr	ystals – applications -
Nuclear Track nano d	efects. Fabrication of nano partic	les – LASER ablation –	- sol gels – pre	ecipitation of quantun
dots. Nano layers – P	VD, CVD, Epitaxy and ion impla	ntation – formation of Si	licon oxide- cl	nemical composition -
doping properties - op	tical properties.			
UNIT III NANOSTE	RUCTURING : Nanophotolithog	raphy– introduction – te	chniques – opt	tical – electron beam
ion beam - X-ray and	d Synchrotron – nanolithography	for microelectronic ind	lustry –nanopo	lishign of Diamond
Etching of Nano struc	tures – Nano imprinting technolo	gy – Focused ion beam	s - LASER int	erference Lithograph
nanoarrays-Near-Fiel	d Optics - case studies and Trends	i de la constante de		
UNIT IV SCIENCE	AND SYNTHESIS OF NANO N	MATERIALS		
Classification of nano	o structures – Effects of nano sc	ale dimensions on vari	ous properties	- structural, thermal
chemical, magnetic,	optical and electronic propertie	es fluid dynamics –Ef	fect of nano	scale dimensions or
mechanical properties	- vibration, bending, fracture Nat	noparticles, Sol-Gel Syn	thesis, Inert Ga	as Condensation, Higl
energy Ball Milling,	Plasma Synthesis, Electro deposi	tion and other technique	es. Synthesis o	f Carbon nanotubes -
Solid carbon source b	ased production techniques -Gas	eous carbon source base	ed production t	techniques – Diamono
like carbon coating. T	op down and bottom up processes			
UNIT V CHARAC	FERIZATION OF NANO MA	TERIALS : Nano-pro	cessing systen	ns – Nano measuring
systems – characteriza	ation – analytical imaging technic	ues – microscopy techn	iques, electron	microscopy scannin
electron microscopy,	confocal LASER scanning mic	roscopy - transmission	electron mic	roscopy, transmissio
electron microscopy,	scanning tunneling microscop	py, atomic force mic	roscopy, diffi	raction techniques

spectroscopy techniques – Raman spectroscopy, 3D surface analysis – Mechanical, Magnetic and thermal properties – Nano positioning systems.

Suggested Readings:

- 1. Tai Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata-McGraw Hill.
- 2. Fahrner W.R., "Nanotechnology and Nanoelectronics", Springer (India) Private Ltd.
- 3. Mark Madou, Fundamentals of Microfabrication, CRC Press.
- 4. Norio Taniguchi, "Nano Technology", Oxford University Press.
- 5. Mohamed Gad-el-Hak, "MEMS Handbook", CRC press.
- 6. Waqar Ahmed and Mark J. Jackson, "Emerging Nanotechnologies for Manufacturing", Elsevier Inc.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

- 7. Sami Franssila, "Introduction to Micro fabrication", John Wiley & sons Ltd.
- 8. Charles P Poole, Frank J Owens, "Introduction to Nano technology", John Wiley and Sons.
- 9. Julian W. Hardner, "Micro Sensors, Principles and Applications", CRC Press.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD14	PC Based Automation	3L-0T-2P	4	None
Course Outcome: Upon completion	of this course the student shall be	able to:		
• To impart kno	wledge on architectural informati	on about PC as a hardw	vare for contro	llers.
Course Contents: UNIT I COMPUTE	R BASICS AND COMMUNIC	CATION PROTOCO	LS: Basic Co	mputer Architecture –
Components of a PC -	- Serial and Parallel Communicat	ions – Parallelport – O	SI Model – R	S232, USB, ISA, PCI,
PXI, PCI Express, GPI	B Protocols.			
UNIT II NETWORI	K PROTOCOLS: LAN, WAN	and MAN Networks -	- RS485, RS	422, LXI Protocols -
Modbus – Field bus –	Ethernet –CAN bus – SCADA and	d DCS.		
UNIT III DATA ACO	QUSITION SYSTEMS: Continue	ous and Discrete signal	s – Sampling t	heorem – Quantization
– Sampling and Hold -	- ADC –DAC – Resolution and S	ampling Frequency – N	Iultiplexing of	f input signals – Single
ended anddifferential i	nputs – Sampling of Multi-chann	el analog signals – Cor	ncept of Unive	rsal DAQ card –Timer
& Counter and analog	output in Universal DAQ card.			
UNIT IV PROGRAM	IMING TECHNIQUES: Algorithm	ithm – Flowchart – Va	riables & Con	stants – Expressions –
Data types – Input o	utput operations- Conditional St	atements – Looping –	Sub-program	s/Functions - Arrays,
Structures and Classes	-Inheritance - Polymorphism - D	Debugging.		
UNIT V GRAPHICA	L PROGRAMMING: GUI – G	raphical Programming	– Data Flow te	echniques – Processing
Data in GP – Loops ar	ndStructures – Event based & Sch	edule based operations	– Global and	Local Variables - File
I/Ooperations – Paralle	el processing of data – Virtual Inst	rument and $control - V$	ISA & SCPI.	
 John P. Hayes William Stalli Krishna Kant, 	M., "Computer System Architectu s, Computer Architecture and Orga ings, "Computer Organization and "Computer based Industrial Contu , "LabVIEW Graphical Programm	anization, McGraw Hill Architecture", Prentice col", Prentice Hall of In	l International. e Hall of India	

6. Sanjeev Gupta, "Virtual Instrumentation using Labview" Tata McGraw

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD15	Industrial Automation	3L-0T-2P	4	None
Course Outcome:		11 .		
1 1	of this course the student shall be a			
• To impart kn	owledge on industrial automation a	ind its applications.		
Course Contents: UNIT I: Automation	: Introduction, automation princip	les and strategies, bas	sic elements o	f advanced functions
levels modeling of ma	nufacturing systems.			
UNIT II: Material h	andling: Introduction, material ha	ndling systems, princi	ples and desi	gn, material transpor
system: transfer mech	nanisms automated feed cut of co	mponents, performanc	e analysis, use	es of various types of
handling systems inclu	uding AGV and its various guiding	technologies.		
UNIT III: Storage s	system: Performance, location str	rategies, conventional	storage meth	ods and equipments
automated storage sys	tems.			
UNIT IV: Automated	manufacturing systems: Compone	ents, classification, over	rview, group to	echnology and cellular
manufacturing, parts	classification and coding, pro-	duct flow analysis, o	ellular manu	facturing, applicatior
considerations in G.T.				
UNIT V: FMS: Intro	duction, components, application,	benefits, planning and	l implementat	ion, transfer lines and
fundamentals of autor	nated production lines, application,	analysis of transfer lin	e without inter	nal storage (numerical
problems).				
UNIT VI: Inspection	n Technology: Introduction, con	tact and non-contact	conventional	measuring, gauging
technique, CMM, sur	rface measurement, machine visio	on, other optical inspe	ection techniq	ues, non-contact non-
optical inspection tech	nologies versus		-	
	uring support system: Process plan	uning and concurrent er	ngineering- pro	ocess planning, CAPP
	nanufacturing, advanced manufact	-		
master production sch	U,		1 4	,
	edule, MRP.			

agile manufacturing.

- Suggested Readings:
 - 1. M.P. Groover, Automation, "Production Systems and Computer Integrated manufacturing", Pearson Education.
 - 2. Vajpayee, "Principles of CIM", PHI.
 - 3. Viswanathan and Narahari, "Performance Modeling of Automated Manufacturing Systems", PHI.
 - 4. R.S. Pressman, "Numerical Control and CAM, John Wiley.

Title of the Course	Course structure	Credit	Pre-Requisite		
Computational Techniques	3L-0T-2P	4	None		
for Vibration Analysis and					
Control					
Course Outcome:					
• Upon completion of the course work, the students will be able to develop a complete FEM solution strategy					
for vibration and control of mechanical and structural systems.					
Course Contents:					
2	Computational Techniques for Vibration Analysis and Control tion of the course work, the studer and control of mechanical and stru	Computational Techniques for Vibration Analysis and Control 3L-0T-2P tion of the course work, the students will be able to devel and control of mechanical and structural systems.	Computational Techniques for Vibration Analysis and Control3L-0T-2P4tion of the course work, the students will be able to develop a complete		

Unit I: Introduction: Review of vibration analysis of one, two, multi-degrees of freedom and continuous systems-Formulation of equations of motion: Hamilton's principle, Lagrange's equation. Development of finite element energy functions: Axial and torque elements, beam and plate bending elements, membrane element-three dimensional solids-axisymmetric solid- Development of equations of motion and boundary conditions.

Unit II: Finite element displacement method: Rayleigh-Ritz method-Axial vibration of bars Torsional vibration of shafts- Bending vibration of beams- Vibration of trusses and frames -Inclusion of shear deformation and rotary inertia effects.

Unit III: In-plane and flexural vibration of plates: In-plane vibration of plates: Linear triangular element-Linear rectangular element- Linear quadrilateral element- Area coordinates for triangles- Linear triangle in area coordinates. Flexural vibration plates: rectangular and triangular elements- conforming and non-conforming elements.

Unit IV: Analysis of free and forced vibration: Eigen value and eigen vectors- orthogonality of eigen vector-Jacobi, LR, QR and QL methods reduction of number of degrees of freedom- Calculation of eigen values and eigen vectors for the physical systems: Bisection/inverse iteration and Lanczos's methods-computation using MATLAB Forced response: Modal analysis- representation of damping: structural and viscous dampingsteady state response to harmonic and periodic excitation- transient response- response to random excitation: response of single degreefreedom, direct and modal response of multidegree of freedom system-simulation using MATLAB.

Unit V: Control of flexible structures: Control systems- stability theory-stability of multi-degrees of freedom systems-analysis of second order system-state space form representation-transfer function analysis-control law design for state space system-linear quadratic regulator-modal control for second order systems-dynamic observer-MATLAB commands for control calculations.

Suggested Readings:

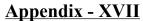
- 1. M. Petyt, "Introduction to finite element vibration analysis", Cambridge University Press
- 2. S.S.Rao, "The finite element method in engineering", Pergamon Press.
- 3. J.N.Reddy, "An introduction to finite element method", McGraw Hill.
- 4. W.T.Thomson and M.D.Dahleh, "Theory of vibration with applications", Prentice Hall.
- 5. S.S.Rao, "Mechanical vibration", Prentice Hall.
- 6. S.G. Kelly, "Theory and problems of mechanical vibrations", McGraw Hill.
- 7. R.C. Dorf and R.H. Bishop, "Modern control system", Pearson Prentice Hall.
- 8. K.Ogata, "Modern control engineering", Prentice Hall.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
MTD17	Micro Electro-Mechanical	3L-0T-2P	4	None		
	Systems					
Course Outcome:						
1	the course, the students will be ab					
	liar with micro fabrication techniq					
	er using a MEMS based solution i					
	st suitable manufacturing process	and strategies for micro	o fabrication			
Course Contents:						
UNIT-I Foundation i	n Microsystems					
Review of microelectr	onics manufacture and introduction	on to MEMS- Overview	v of Microsyst	ems technology, Laws		
of scaling- The multi	disciplinary nature of MEMS- Sur	evey of materials centra	l to micro eng	ineering- Applications		
of MEMS in various in	ndustries					
Unit-II Micro Manuf	acturing Techniques					
Photolithography- File	m deposition, Etching Processes-	Bulk micro machining	g, silicon surf	ace micro machining-		
LIGA process-Rapid n	nicro product development.					
Unit-III Micro Senso	rs and Micro Actuators					
Energy conversion and	d force generation-Electromagneti	c Actuators, Reluctanc	e motors, piez	oelectric actuators, bi-		
metal-actuator Friction	n and wear -Transducer principle	es, Signal detection an	d signal proce	essing-Mechanical and		
physical sensors-Acce	physical sensors-Acceleration sensor, pressure sensor, Sensor arrays.					
Unit-IV Introduction	Unit-IV Introduction to Micro/Nano Flu ids					
Fundamentals of micr	o fluidics- Micro pump – introduc	ction – Types - Mechai	nical Micro pu	mp – Non mechanical		
micro pumps, Actuati	ng Principles, Design rules for	micro pump – modeli	ng and simula	tion, Verification and		

testing -Applications

Unit-V Microsystem Design and Packaging

Design considerations-Mechanical Design, Process design, Realization of MEMS components using Intellisuite.


Micro system packaging-Packing Technologies-Assembly of Microsystems- Reliability in MEMS

Suggested Readings:

- 1. Maluf, Nadim, "An introduction to Micro Electro-mechanical Systems Engineering", AR Tech house, Boston.
- 2. Mohamed Gad el -Hak, "MEMS Handbook" CRC Press.
- 3. Sabriesolomon"Sensors Handbook", McGraw Hill.
- 4. Marc F madou" Fundamentals of micro fabrication" CRC Press.
- 5. Francis E.H Tay and W. O. Choong, "Micro fluidics and bio MEMS application", Springer US.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD18	MEMS and NEMS	3L-0T-2P	4	None
Course Outcome:				
Upon completion	of this course the student shall b	be able to:		
• To impart kr	owledge on MEMS and NEMS a	and its applications.		
Course Contents:				
Micro and nano mee	chanics:			
principles, methods a	nd strain analysis, an introduction	on to microsensors and M	MEMS, Evolut	ion of Microsensors&
MEMS, Microsenso	rs& MEMS applications, M	icroelectronic technolog	ies for ME	MS, Micromachining
Technology – Surfac	e and Bulk Micromachining, M	licromachinedMicrosenso	ors, Mechanica	l, Inertial, Biological,
Chemical, Acoustic, 1	Microsystems Technology, Integ	grated Smart Sensors an	d MEMS, Int	erface Electronics for
MEMS, MEMS Simu	lators, MEMS for RF Applicati	ons, Bonding & Packagin	ng of MEMS,	Conclusions & Future
Trends.				

Nanoelectromechanical systems (NEMS)

a journey from MEMS to NEMS, MEMS vs. NEMS, MEMS based nanotechnology – fabrication, film formation and micromachining, NEMS physics – manifestation of charge discreteness, quantum electrodynamical (QED) forces, quantum entanglement and teleportation, quantum interference, quantum resonant tunneling and quantum transport, Wave phenomena in periodic and aperiodic media – electronic and photonic band gap crystals and their applications, NEMS architecture, Surface Plasmon effects and NEMS fabrication for nanophotonics and nanoelectronics, Surface Plasmon detection – NSOM/SNOM

Suggested Readings:

- 1. Busch-Vishniac, Ilene J., "Electromechanical Sensors and Actuators", Springer, 2008.
- 2. V, G. W. Neudeck and R. F. Pierret, "Introduction to Microelectronics Fabrication", Addison Wesley.
- 3. H. J. De Loss Santos, "Introduction to Microelectromechanical Microwave Systems", Norwood, MA: Artech,
- 4. S. D. Senturia, ,Kluwer, "Microsystems Design", Academic Publishers.
- 5. H. J. Delos Santos, "Principles and Applications of Nano-MEMS Physics", Springer.
- 6. Francis E. H, "Materials and Process Integration for MEMS Microsystems", Springer.
- 7. D. K. Roy, "Quantum Mechanical Tunneling and its Application", World Scientific.
- 8. H. S. Nalwa, "Encyclopedia of Nanoscience and Technology", American scientific Publishers.
- 9. P. J. F. Harris, "Carbon Nanotubes and Related Structures", , Cambridge University Press
- 10. M Sharon and M. Sharon, "Carbon Nanoforms and Applications", McGraw Hill.
- 11. S. M. Sze, "VLSI Technology", Mc-Graw Hill, NY.
- 12. S. Datta, "Addison Quantum Phenomena", Wesley.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
MTD19	Design Of Hydraulic and Pneumatic Systems	3L-0T-2P	4	None		
Course Outcome:	ž – ž	•				
Upon completion	Upon completion of this course the student shall be able to:					
• Have fundam	ental of fluid power control.					
Design specia	al circuits for low cost automation.					
Course Contents:						
UNIT I Hydraulic Sy	stems and Actuators					
Basic principles-Hydra	aulic Principles. Hydraulic Power	r Generators - Selectio	n and specific	ation of pumps, pump		
characteristics. Hydrau	ılic Actuators – Linear, Rotary - S	election – Characteristic	cs.			
UNIT II Control and	Regulation Elements					
Hydraulic Valves: Pres	ssure, Flow, Direction Controls- P	roportional Control val	ve. Fluid powe	r symbols.		
UNIT III Design of H	ydraulic Circuits					
Hydraulic circuits:- Re	eciprocating, Quick return, Seque	encing, synchronizing a	nd other indus	strial circuits like press		
circuits - hydraulic n	circuits - hydraulic milling machine - grinding, planning, copying, forklift, earth mover circuits - design and					
selection of componer	nts - safety and emergency mand	rels. Design of Hydrau	lic circuits – S	Selection and sizing of		

components-calculation of frictional head loss-equivalent length for various components- actuator load calculationpump sizing.

UNIT IV Pneumatic Systems and Circuits

Pneumatic system fundamentals: FRL, actuators and valves. Logic Circuits - Position – Pressure Sensing, switching, electro-pneumatic. Design of Pneumatic circuits using–Karnaugh maps. Cascade-Step counter.

UNIT V Installation, Maintenance and Special Circuits

Pneumatic equipments - selection of components - design calculations -application - fault finding -hydro pneumatic

circuits - use of microprocessors for sequencing - PLC, Low cost automation -Robotic circuits.

Suggested Readings:

- 1. S. R. Majumdar, "Oil hydraulics and Pneumatics", Tata McGraw Hill.
- 2. W. Bolton "Pneumatic and hydraulic systems", Butterworth Heinemann.
- 3. Anthony Esposite, "Fluid Power with Applications", Pearson Education.
- 4. J. Michael, Pinches and John G Ashby, "Power Hydraulics", Prentice Hall.
- 5. Andrew Parr, "Hydraulics and Pneumatics", Jaico.
- 6. Dudleyt A Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

<u> Appendix - XVII</u>

SCHEME OF COURSES - M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite	
MTD20	Machine Tool Control and	3L-0T-2P	4	None	
	Condition Monitoring				
Course Outcome:		11 /			
Upon completion	of this course the student shall be	able to:			
To impart the	e knowledge in the area of maching	ne tool control and cor	ndition monito	ring in a mechatronics	
perspective.	-			-	
perspective.					
Course Contents:					
UNIT I OVERVIEW	OF AUTOMATIC CONTROL	IN MACHINE TOOI	LS		
Open loop and closed	loop system in machine tools- p	rocess model formulati	ion-transfer fu	nction control actions-	
block diagram representation of mechanical pneumatic and electrical systems. Process computer - peripherals-Data					
logger-Direct digital control-Supervisory computer control.					
UNIT II DRIVE SYSTEMS AND FEED BACK DEVICES IN MACHINE TOOLS					
Hydraulic and Pneum	atic drives, Electrical drives – A	A.C. Motor, D.C. Moto	or, Servo mot	or and Stepper motor.	

Feedback devices - Syncro, resolver, diffraction gratings, potentiometer, Inductosyn and encoders-application in machine tools.

UNIT III ADAPTIVE CONTROL AND PLC

Adaptive control-types - ACC, ACO, Real time parameter estimation, Applications- adaptive control for turning, milling, grinding and EDM. Programmable logic controller-Functions-Applications in machine tools.

UNIT IV VIBRATION, ACOUSTIC EMISSION / SOUND

Primary & Secondary signals, Online and Off-line monitoring. Fundamentals of Vibration, Sound, Acoustic Emission. Machine Tool Condition Monitoring through Vibration, Sound, Acoustic Emission, Case Studies

UNIT V CONDITION MONITORING, THROUGH OTHER TECHNIQUES

Visual & temperature monitoring, Leakage monitoring, Lubricant monitoring, condition monitoring of Lube and

Hydraulic systems, Thickness monitoring, Image processing techniques in condition monitoring.

Suggested Readings:

- MikellP.Groover, "Automation Production system and Computer Integrated Manufacturing", Prentice Hall 1. of India Pvt. Ltd.
- Sushil Kumar Srivstava, "Industrial Maintenance Management", S.Chand& Company Ltd 2.
- Manfred Weck, "Hand Book of Machine Tools", John Wiley & Sons. 3.

Wiley and Sons Ltd., Public

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

MTD21 Robust Control 3L-0T-2P 4 Non Course Outcome: Upon completion of this course the student shall be able to: • Know the importance of digital control systems	ne
Upon completion of this course the student shall be able to:	
• Know the importance of digital control systems	
• Solve problems using z-transform, inverse z- transform techniques.	
Course Contents: UNIT I INTRODUCTION: Norms of vectors and Matrices – Norms of Systems – Calculation of operat	or Norms
- vector Random spaces- Specification for feedback systems - Co-prime factorization and Inner fun	nctions -
structured and unstructured uncertainty- robustness	
UNIT II H2 OPTIMAL CONTROL: Linear Quadratic Controllers - Characterization of H2 optimal con	trollers –
H2 optimal estimation-KalmanBucy Filter – LQG Controller	
UNIT III H-INFINITY OPTIMAL CONTROL-RICCATI APPROACH: Formulation – Characterizat	ion of H-
infinity sub-optimal controllers by means of Riccati equations - H-infinity control with full information -	Hinfinity
estimation	
UNIT IV H-INFINITY OPTIMAL CONTROL- LMI APPROACH: Formulation - Characterization	on of H-
infinity sub-optimal controllers by means of LMI Approach - Properties of H-infinity sub-optimal control	lers – H-
infinity synthesis with poleplacement constraints	
UNIT V SYNTHESIS OF ROBUST CONTROLLERS & CASE STUDIES: Synthesis of Robust Con	trollers –
Small Gain Theorem - D-K -iteration- Control of Inverted Pendulum- Control of CSTR - Control of A	Aircraft –
Robust Control of Second-order Plant Robust Control of Distillation Column.	
Suggested Readings: 1. U. Mackenroth "Robust Control Systems: Theory and Case Studies", Springer International	
2. J. B. Burl, "Linear optimal control H2 and H-infinity methods", Addison W Wesley.	
3. D. Xue, Y.Q. Chen, D. P. Atherton, "Linear Feedback Control Analysis and Design 26 with M	ATLAB,
Advances In Design and Control", Society for Industrial and Applied Mathematics.	
4. I. R. Petersen, V.A. Ugrinovskii and A. V. Savkin, "Robust Control Design using H- infinity N	1ethods",
	lethods",

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD22	Instrumentation & Sensor	3L-0T-2P	4	None
	Technology			
Course Outcome:				
Upon completion	of this course the student shall be	able to:		
• Know about	measurement and characteristics.			
• Know about o	different type of transducers and it	s applications.		
• Understand N	Aathematical analysis of different f	faults diagnosis systems		
Course Contents:				
	COUDEE	CONTENTS		

COURSE CONTENTS

UNIT I: Measurement and Characteristics: Elements of a Measurement System; Classification of Instruments; Static Performance Parameters; Loading and Impedance Matching; Errors and Uncertainties in Measurement; Process and Standards of Calibration; Dynamic Characteristics- Transfer Function Representation of a Measurement System, Impulse and Step Responses of First and Second Order Systems, Frequency Response of First and Second Order Systems.

UNIT II: Mechanical Transducers: Temperature- Bimetallic Element and Fluid Expansion type Thermometers; Pressure- Manometers and Bourdon Gauges; Force- Balances, Helical Spiral Springs, Load Cells and Elastic Force Devices; Torque- Torsion Bars and Flat Spiral Springs; Liquid Level- Float Systems and Level to Pressure Converters; Flow- Pitot Static Tubes and Turbine type Flow Meters.

UNIT III: Electrical Transducers: Resistance Thermometers; Interfacing Resistive Transducers to Electronic Circuits; Thermistors- Measurement of Temperature and Thermal Conductivity, Temperature Control; Resistance Strain Gauges- Gauge Factor, Bonded and Unbonded Strain Gauges; Self Generating and Non Self Generating Inductive Transducers; Linear Variable Differential Transformers; Capacitive Transducers - Potentiometric Transducers; Thermoelectric Transducers and Sources of Errors in Thermocouples; Piezoelectric and Magnetostrictive Transducers; Photoelectric Transducers- Photoemissive, Photoconductive and Photovoltaic types; Electromechanical Transducers- Tachometers, Digital Transducers-Electromagnetic Frequency Domain and Optoelectrical Frequency Domain Transducers, Vibrating String Transducers.

UNIT IV: Basic Signal Conditioning Elements: Amplifiers- Non Electrical and Electrical types; Op Amps-Inverting, Non Inverting, Summing, Differential, and Charge Amplifiers; Differentiating and Integrating Elements; Filters; A to D and D to A Converters- Potentiometric, Dual Slope and Counting types; Data Transmission Elements- Electrical, Pneumatic, Position and Radio Frequency Transmission types; Compensation Elements for First and Second Order Systems - Basic Indicating, Recording, and Display Elements.

UNIT V: Feedback in Instruments- Principles of Feedback and Advantages & Disadvantages of Feedback; Digital Voltmeters-Ramp and Dual Slope types; Servo type Potentiometric and Magnetic Tape Recorders; Digital Recorders

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

of Memory type; Data Displays-Analog and Digital types. Advanced Measuring Techniques: Temperature- Total and Selective Radiation type Pyrometers; Pressure-McLeod Gauge, Ionization Gauge; Flow- Ultrasonic and Electromagnetic Flow Meters, Hot Wire Anemometer.

UNIT VI: Proximity Sensors- Reed Sensors, Inductive proximity sensor, Capacitive proximity sensor, Optical sensor with through beam, Retro Reflective, Diffuse sensors, Analog inductive, Analog capacitive, Analog optical, Ultrasonic sensors.

Suggested Readings:

- 1. Electronic Measurements and Instrumentation, K. Lal Kishore, Pearson Education Publications
- 2. Electronic Instrumentation, H.S. Kalsi-TMH Publications

REFERENCE BOOKS:

- 1. Albert D Helfrick and William D Cooper; "Modern Electronic Instrumentation and Measurement Techniques", PHI.
- 2. BC Nakra, and Chaudhry; "Instrumentation, Measurement and Analysis" Tata McGraw-Hill.
- 3. DVS Murthy, "Transducers and Instrumentation", PHI.
- 4. CS Rangan, GR Sarma, and VSV Mani, "Instrumentation Devices and Systems", Tata McGraw-Hill.
- 5. Doeblin and Ernest; "Measurement Systems Application and Design", Tata McGraw-Hill.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite	
MTD23	Introduction To Optimization Methods	3L-0T-2P	4	None	
Course Outcome:					
Upon completion	of this course the student shall be	able to:			
• Know about o	optimization techniques and progr	amming.			
• Know about 1	multi-objective programming.				
• Know about i	mplementation in real life problem	ns.			
Course Contents:					
UNIT I: Introduction	: An overview of optimization pr	oblems, some simple ill	ustrative exam	ples	
UNIT II: Linear Pr	ogramming: Introduction, grapl	nical method, simplex	method, meth	od of artificial variable	
alternate optima, redu	ndancy in linear programming, de	generacy and cycling, th	e simplex tabl	eau in condensed form.	
UNIT III: Nonlinear	r programming: Introduction, I	Lagrange multipliers, K	Karaush-Kuhn-	Tucker (KKT) optima	
conditions, convexity,	sufficiency of the KKT condition	s, Duality and convexity	/.		
UNIT IV: Goal Prog	ramming: Concept of Goal Progr	amming, Model Formul	ation, Graphic	al solution method.	
UNIT V: Approxim	ation Techniques: Introduction,	line search methods,	gradient based	d methods, approximat	
under constraints.					
UNIT VI: Search Te	chniques: Direct search and gra	dient methods, Unimod	al functions, 1	Fibonacci method, Gold	
Section method, Metho	od of steepest descent, Newton-Ra	aphson method, Conjuga	ate gradient m	ethods.	
UNIT VII: Dynamic	Programming: Sequential optim	ization; Representation	of multistage	decision process; Types	
multistage decision p	roblems; Concept of sub optimi	zation and the principl	e of optimali	ty; Recursive equations	
Forward and backward recursions; Computational procedure in dynamic programming (DP); Discrete versus continuo					
dynamic programming	; Multiple state variables; curse o	f dimensionality in DP			
UNIT VIII: Multiobj	ective Programming: Efficient s	olutions, Domination co	ones.		
Suggested Readings:	Bazaaraa Hanif D Shirali and M	C Shotter "Nonlingon	D		

- Mokhtar S. Bazaaraa, Hanif D. Shirali and M.C.Shetty, "Nonlinear Programming Theory and Algorithms John Wiley & Sons.
- 2. Pablo Pedregal, "Introduction to optimization", Springer.
- 3. Suresh Chandera, Jaydeva, and Aparna Mehta, "Numerical optimization with applications", Narosa.
- 4. Edvin K.P. Chong, and Stanislaw H. Zak, "An Introduction to optimization", John Wiley
- 5. Mohan C. Joshi and Kannan M Moudgalya, "Optimization theory and practice", Publisher, Narosa
- 6. D. G. Luenberger, "Linear and Nonlinear Programming", Addison Wesley
- 7. R. E. Steuer, Multi Criteria Optimization, Theory, "Computation and Application", John Wiley and Sons.

Course No.

Pre-Requisite

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course structure

Credit

Title of the Course

MTD24	Signal Processing In Mechatronic Systems	3L-0T-2P	4	None	
Course Outcome:	v	1			
Upon completion of this course the student shall be able to:					
• Know about c	lifferent type filter applications in	mechatronic.			
• Understand th	ne designing of different types of f	ilters for mechatronics.			
• Understand D	SP processors.				
Course Contents:					
UNIT I: Discrete-	Time Signals: Sequences; repre	sentation of signals o	on orthogonal	basis; Sampling and	
Reconstruction of sign	als				
UNIT II: Discrete sys	stems: Z-Transform, Analysis of I	LSI systems, Frequency	Analysis, Inv	erse Systems, Discrete	
Fourier Transform (DF	FT), Fast Fourier Transform algori	thm, Implementation of	Discrete Time	e Systems.	
UNIT III: Frequency	selective filters: Ideal filter chara	acteristics, lowpass, hig	hpass, bandpas	ss and bandstop filters,	
Paley-Wiener criterion	n, digital resonators, notch filters	, comb filters, all-pass	s filters, inver	se systems, minimum	
phase, maximum phase	e and mixed phase systems.				
UNIT IV: Design of FIR and IIR filters: Design of FIR filters using windows, frequency sampling, Design of IIR					
filters using impulse invariance, bilinear transformation and frequency transformations, Butterworth, Chebyshev					
Filters.					
UNIT V: Introduction to multi-rate signal processing: Decimation, interpolation, polyphase decomposition;					

digital filter banks: Nyquist filters, two channel quadrature mirror filter bank and perfect reconstruction filter banks, subband coding.

UNIT VI: Introduction to DSP Processors: Introduction to various Texas processors such as TMS320C6713, TMS320C6416, DM6437 Digital Video Development Platform with Camera, DevKit8000 OMAP3530 Evaluation Kit.

UNIT VII: Applications: Application of DSP to Speech and Radar signal processing, A few case studies of DSP applications in multimedia using TI DSP kits.

Suggested Readings:

1. S. K. Mitra, Digital Signal Processing: A computer-Based Approach, 3/e, Tata McGraw-Hill

- 2. A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing, Prentice Hall India.
- 3. J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, , Pearson Education.
- 4. V.K. Ingle and J.G. Proakis, "Digital signal processing with MATLAB", Cengage.
- 5. T. Bose, "Digital Signal and Image Processing", John Wiley and Sons, Inc.
- 6. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall.
- 7. A. Antoniou, "Digital Filters: Analysis, Design and Applications", Tata McGraw-Hill.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD25	Fault Detection And Diagnosis	3L-0T-2P	4	None
Course Outcome:	× *	·		
	of this course the student shall be			
	tion of this course, the students c			
	lifferent type of faults occurred i	•		
	Iathematical analysis of different			
	tructured and directional concept	ts techniques for FDI des	ign.	
Course Contents: UNIT I: Introduction	to Fault Detection and Diagnosi	s: Scope of FDD:- Types	of faults and	different tasks of Fault
Diagnosis and Imple	mentation - Different approac	hes to FDD: Model f	ree and Mod	lel based approaches.
Classification of Fault	and Disturbances- Different issu	es involved in FDD- Typ	oical application	ons.
UNIT II: Analytical I	Redundancy Concepts: Introduct	tion- Mathematical repre	sentation of F	ault and Disturbances:
Additive and Multiple	licative types – Residual Gen	eration: Detection, Isol	ation, Compu	atational and stability
properties - Design of	Residual generator – Residual sp	pecification and Impleme	ntation.	
UNIT III: Design of	Structured Residuals: Introduction	on- Residual structure of	single fault Is	solation: Structural and
Canonical structures-	Residual structure of Multiple f	ault Isolation: Diagonal	and Full Row	v canonical concepts -
Introduction to parity e	equation implementation and alte	ernative representation.		
UNIT IV: Design o	f Directional structured Residu	als: Introduction – Dir	ectional Spec	ifications: Directional
specification with and	without disturbances – Parity Eq	uation Implementation –	Linearly depe	ndent column.
UNIT V: Advanced 1	evel issues and design involved	l in FDD: Introduction of	of Residual ge	neration of parametric
fault – Robustness Is	sues -Statistical Testing of Res	sidual generators – App	lication of N	eural and Fuzzy logic
schemes in FDD – Cas	e study.			
Suggested Readings:	er Fault Detection and Diagnosi	· - · · /		

- 1. Janos J. Gertler, Fault Detection and Diagnosis in Engineering systems, Macel Dekker.
- 1. Sachin. C. Patwardhan, Fault Detection and Diagnosis in Industrial Process Lecture Notes, IIT Bombay,
- 2. Rami S. Mangoubi, Robust Estimation and Failure detection. Springer-Verlag-London.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD26	Drives And Controls For Automation	3L-0T-2P	4	None
Course Outcome: Upon completion of this course the student shall be able to:				
• To impart know	owledge in the area of hydraulic, p	oneumatic electric actua	tors and their c	control.
	VER SYSTEM GENERATION	AND ACTUATORS:	Need for auto	mation, Classification
of drives-hydraulic, p	oneumatic and electric -comparis	son – ISO symbols fo	r their elemer	ts, Selection Criteria.
Generating Elements-	- Hydraulic pumps and motor gea	rs, vane, piston pumps	-motors-select	ion and specification -
Drive characteristics -	- Utilizing Elements Linear actua	ator – Types, mounting	details, cushie	oning – power packs –
accumulators				
UNIT II CONTROL	AND REGULATION ELEMEN	NTS: Control and regul	ation Elements	Mono-Direction, flow and
pressure control valve	esMethods of actuation, types, si	zing of ports. spool va	lves-operating	characteristics-electro
hydraulic servo valves	-Different types-characteristics an	d performance		
UNIT III CIRCUIT	DESIGN FOR HYDRAULIC A	ND PNEUMATICS: 1	ypical Design	methods - sequencing
circuits design - comb	pinational logic circuit design-ca	scade methodKarna	ugh map meth	od Electrical control
of pneumatic and hy	draulic circuits-use of relays, tin	ners, counters, Program	nmable logic	control of Hydraulics
Pneumatics circuits, P	LC ladder diagram for various circ	cuits, motion controllers	, use of field b	usses in circuits.
UNIT IV ELECTRI	CAL ACTUATORS: D.C Moto	orWorking principle,	classification,	characteristics, Merits
and Demerits, Applic	cations- AC Motor Working p	rinciple, Types, Speed	l torque chara	cteristics, Merits and
demerits, Application	s Stepper motor- principle ,clas	sification, construction	. Piezo electr	ic actuators – Linear
actuators - Hybrid actu	uators – Applications			
UNIT V ELECTRIC	CAL DRIVE CIRCUITS: DC M	otors - Speed ,direction	and position of	control using H-bridge
under PWM mode. Co	ontrol of AC motor drives- Need for	or V/ F drives – Energy	saving AC dri	ves.– Stepper Motor –
Drive circuits for spee	d and position control, BLDC mot	or – Controller – Switc	hed reluctance	motor.
 Peter Rohner E.C.Fitch and 	sito, "Fluid Power Systems and co , "Fluid Power logic circuit design l J.B.Suryaatmadyn., "Introduction lechatronics, "Electronic control s	", The Macmillan Press 1 to fluid logic", McGra	w Hill.	engineering", Pearson

5. GopalK.Dubey, "Fundamentals of electrical drives", Narosa Publications.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD27	Energy Auditing and Management	3L-0T-2P	4	None
Course Outcome:	· ~ ~			•
Upon completion	of this course the student shall be	e able to:		
• To impart kn	owledge on energy auditing and i	its applications.		
• Financial mat	nagement and its application in re	enewable system.		
Course Contents:				
UNIT I Energy Scen	nario: Energy needs of growing	g economy, Long term e	nergy scenari	o, Energy pricing, Ene
sector reforms, Energ	y and environment: Air pollution	n, Climate change, Energ	gy security, E	nergy sonservation and
importance, Energy st	rategy for the future, Energy cons	servation Act-2001 and it	ts features.	
UNIT II Energy Mai	nagement and Audit: Definition	, Energy audit- need, Ty	pes of energy	audit, Energy managen
(audit) approach-und	erstanding energy costs, Benc	ch marking, Energy p	erformance, 1	Matching energy use
requirement, Maximiz	zing system efficiencies, Optimiz	ing the input energy req	uirements, Fu	el and energy substitut
Energy audit instrume	nts			
UNIT III Material a	nd Energy Balance: Facility as	an energy system, Meth	ods for prepar	ing process flow, Mate
and energy balance dia	agrams.			
UNIT IV Financial	Management: Investment-need	, Appraisal and criteria	, Financial an	alysis techniques- Sim
payback period, Retu	rn on investment, Net present v	value, Internal rate of r	eturn, Cash fl	ows, Risk and sensiti
analysis, Financing op	tions, Energy performance contra	acts and role of ESCOs.		
UNIT V Electrical	System: Electricity tariff, Loa	d management and ma	ximum dema	nd control, Power fa
improvement, Distrib	ution and transformer losses. L	osses in induction moto	ors, Motor eff	iciency, Factors affec

improvement, Distribution and transformer losses. Losses in induction motors, Motor efficiency, Factors affecti motor performance, Rewinding and motor replacement issues, energy efficient motors. Light source, Choice of lightir Luminance requirements, and Energy conservation avenues

Suggested Readings:

- 1. Abbi, Y.P. and Jain, S, Handbook on Energy Audit and Environment Management, Teri Press.
- 2. P.Diwan and P.Dwivedi, "Energy Conservation", Pentagon Press.
- 3. A.Thumann, W.J.Younger, T.Niehus, "Handbook of Energy Audits", CRC Press.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD28	Evolutionary Computations	3L-0T-2P	4	None
Course Outcome: Upon completion	of this course the student shall be	able to:		
• To impart k	nowledge on evolutionary computat	ions and its application	s.	
Course Contents: Introduction: A br	ef history of evolutionary comp	utation, Elements of	Genetic Algor	ithms, A simple gene
algorithm, Applicatio	ns of genetic algorithms.			
Genetic Algorithms	in Scientific Models: Evolving co	omputer programs, data	a analysis & p	rediction, evolving neu
networks, Modeling	interaction between learning & e	evolution, modeling se	xual selection	, measuring evolutiona
activity.				
Theoretical Founda	tion of Genetic Algorithm: Sche	emas & Two-Armed an	nd k-armed pr	oblem, royal roads, exa
mathematical models	of simple genetic algorithms, Statis	stical- Mechanics Appro	oaches.	
Computer Impleme	ntation of Genetic Algorithm: [Data structures, Reprod	uction, crosso	ver & mutation, mappi
objective functions to	fitness form, fitness scaling, codin	ng a multiparameter, m	apped, fixed p	oint coding, discretizati
and constraints.				
Some Applications	of Genetic Algorithms: The risl	k of genetic algorithm	s, De Jong's	& function optimization
Improvement in basic	techniques, current application of	genetic algorithms		
Advanced Operator	s and Techniques in Genetic Se	earch: Dominance, du	plicity, & abe	yance, inversion & oth
reordering operators	Other micro operators, Niche	& speciation, multiob	jective optimi	zation, knowledge bas
techniques, genetic al	gorithms & parallel processors.			
 Melanle Mit Michael D. V Masatoshi S 	dberg, "Genetic algorithms in sear chell, "An introduction to genetic a Vose, "The simple genetic algorithm akawa, "Genetic Algorithms & Fuz ella, J Periaux, C Poloni& G Winter	lgorithms", Prentice H n foundations and theor zy Multiobjective Optin	all India. y", Prentice H mization", Klu	all India. 1wer Academic Publishe

5. D. Quagliarella, J Periaux, C Poloni& G Winter, "Genetic Algorithms in Engineering & Computer science", John Wiley & Sons.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD29	Fundamentals of Electrical	3L-0T-2P	4	None

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course Outcome:

Upon completion of this course the student shall be able to:

Machines And Drives

- Know about electrical machine construction and performance characteristics.
- Know about different drives systems and its application.

Course Contents:

UNIT I: Introduction to Transformer: Working Principle, Construction, Operation and Equivalent circuit.

UNIT II: Basic Concept of Rotating Machines: Parts of rotating electrical machines, Torque production and Ener conversion.

UNIT III: D. C. Motors: EMF equation, Types of DC Motors, Torque speed characteristics, types of starters and spe control, losses and efficiency, application of DC motors.

UNIT IV: Three-Phase Induction Motors: Construction, Principle of working, Rotating magnetic field production

Slip, Equivalent circuit, Torque-slip characteristics, Speed control and method of starting and applications.

UNIT V: Special Motors: Single phase motors, Stepper motor, Servomotors, Synchronous motor

UNIT VI: Industrial Applications: Case studies of motor drive system for steel mills, paper mills and machine to application.

Suggested Readings:

- 1) AshfaqHussian, "Electrical Machines", Dhanpat Rai & Company.
- 2) P.S. Bhimbra, "Electrical Machinery", Khanna Publishers.
- 3) S. J. Chapman, "Electrical Machinery", McGraw Hill.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD30	Power Quality And	3L-0T-2P	4	None

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

	Harmonics			
Course Outcome:	·	·		·
1 1	of this course the student shall			
	d about power quality phenome		system.	
	different measures and standard	•		
7. Understand t	he designing concepts of mitiga	tion systems for PQ.		
	bout grounding and its applicat	ions.		
Course Contents:	.			15 D 15
UNIT I: Introductio	n: Introduction to power qual	ity, voltage quality. Overv	new of power	quality, Power quality
phenomena and classi	fication of power quality issues			
UNIT II: Power of	uality measures and stan	dards-THDTIF-DIN-mess	age weights-	flicker factor-transient
phenomena-occurrenc	e of power quality problems-	power acceptability curve	es-IEEE guide	es, EMC standards and
recommended practice	es.			
UNIT III: Harmoni	c Device Modeling: Harmon	ics background, basic con	ncepts, Fourie	r analysis. Harmonics-
individual andtotal ha	rmonic distortion-RMS value	of a harmonic waveform-	triplex harmo	nic-important harmonic
introducingdevices-Tr	ansformer, Three phase j	ower converters-arcing	devices-satu	arabledevices.Harmonic
distortion due tofluore	scentlamps.Effect of power sys	stem harmonics on power	system equipn	nent and loads.
UNIT IV: Modeling of networks and components under non-sinusoidal conditions-transmission and distribution				
systems-shunt capacit	ors-transformers-electric mach	ines-ground systems-load	s that cause p	ower quality problems-
power quality problem	ns created by drives and impact	on drives.		
TINIT V. H.	Mitigation, Hammania maganan	- Investore Com Angle		Eltoning Introduction to

UNIT V: Harmonic Mitigation: Harmonic resonance, Impedance Scan Analysis- Passive filtering. Introduction to active power filtering. Control methods for single phase APFC.

UNIT VI: Grounding: Grounding and wiring –introduction-NEC grounding requirements-reasons for grounding-typical grounding and wiring problems-soklutions to grounding and wiring problems.

Suggested Readings:

- 1. Ambrish Chandra, Bhim Singh, and Kamal Al-Haddad, "Power Quality: Problems and Mitigation Techniques", Wiley.
- 2. G. T. Heydt, "Electric Power Quality", CRC Press
- 3. J. Arrillaga, B. C. Smith, N. R. Watson & A. R. Wood, Power System Harmonic Analysis,
- 4. Understanding Power Quality Problems, Math H. Bollen.
- 5. Jos Arrillaga, Neville R. Watson, S. Chen, Power System Quality Assessment, Wiley.
- 6. Mark Lamendola, IEEE standard on electrical grounding.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD31	Digital Control Systems	3L-0T-2P	4	None

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course Outcome:

Upon completion of this course the student shall be able to:

- Know the importance of digital control systems
- Solve problems using z-transform, inverse z- transform techniques.
- Know the advantage of state variable technique, controllability, observability for effective design of controller using digital technique.

Course Contents:

UNIT I Introduction

Sampling and holding – Sample and hold device D/A, A/D conversion – Z transform – Inverse Z transform – properties – Pulse transfer function and response between sampling intervals – Reconstruction.

UNIT II Variable Technique

State equations of discrete data systems – State transition equations – Relationship between state equation and transfer functions - Characteristic equations – Eigen value –eigen vector – Diagonalization of Matrix – Jordan canonical form – Methods of computing state transition matrix – State diagram – Decomposition of discrete data transfer function.

UNIT III Controllability, Observability and Stability

Controllability and observability of linier time invariant discrete data systems – Relationships between controllability, observability and transfer function-Stability of linier discrete control system – Stability tests – Bilinear transformation method – Jury's stability test.

UNIT IV Design of Digital Control Systems

Correlation between time response and root locations in S plane and Z plane – Direct design in Z and W plane – State space design – Design via pole placement, digital PID controller design.

UNIT V Microprocessor Based Control

Selection of processors – Mechanization of control algorithms – Merits and demerits – Applications of temperature control – Control of electric drives.

Suggested Readings:

- 1. K. Ogata, "Discrete Time Control Systems", Pearson Education Asia.
- 2. B.C. Kuo, "Digital Control Systems", Oxford University Press.
- 3. M. Gopal, "Digital Control Engineering", Willey Eastern Ltd.
- 4. M.Gopal, "Digital Control and State Variable Methods", Tata McGraw Hill.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD32	Precision Engineering	3L-0T-2P	4	None
Course Outcome:				
	of this course the student shall be			
-	of accuracy identification and mea Datum systems.	suring systems.		
	Mathematical analysis of different f	aulta		
	•			
• Onderstand a	bout tolerance charting techniques	and nano-technologies	•	
	Accuracy: Introduction – Concept	ot of Accuracy of Mach	ine Tools – Sp	oindle ad Displacement
Accuracies –Accurac	y of numerical Control Systems	- Errors due to Nu	merical Interp	polation Displacement
Measurement System	and Velocity Lags.			
Geometric Dimensio	ning And Tolerancing: Toleranc	e Zone Conversions –	Surfaces, Feat	tures, Features of Size,
Datum Features – Da	tum Oddly Configured and Curve	ed Surfaces as Datum I	Features, Equa	lizing Datums–Datum
Feature of Representat	tion – Form Controls, Orientation	Controls – Logical App	roach to Toler	ancing.
UNIT II:Datum Syst	tems: Design of freedom, Groupe	d Datum Systems – dif	ferent types, t	wo and three mutually
perpendicular grouped	l datum planes; Grouped datum sy	stem with spigot and r	ecess, pin and	hole; Grouped Datum
system with spigot an	d recess pair and tongue – slot pa	ir – Computation of Tr	ransnational a	nd rotational accuracy,
Geometric analysis an	d application.			
UNIT III:Tolerance	Analysis: Process Capability,	Mean, Variance, Skev	vness, Kurtos	is, Process Capability
Metrics, Cp, Cpk, Cos	t aspects, Feature Tolerances, Geo	metric Tolerances.		
Tolerance Charting	Techniques-Operation Sequence f	for typical shaft type of	components,	Preparation of Process
drawings for differen	nt operations, Tolerance workshe	ets and centrally anal	ysis, Example	es. Design features to
facilitate machining;	Datum Features – functional	and manufacturing.	Components	design – Machining
considerations, Redesi	ign for manufactured, Examples			
UNIT IV: Surface fr	inish, Review of relationship bet	ween attainable tolerar	nce grades an	d different machining
process. Cumulative e	ffect of tolerances sure fit law, nor	mal law and truncated 1	normal law.	
.UNIT V:Fundement	t als of Nanotechnology : System o	f nanometer accuracies	– Mechanism	of metal Processing –
Nano physical process	sing of atomic bit units. Nanotechn	ology and Electrochem	ical atomic bit	processing.
Measuring Systems	Processing: In processing or insitu	imeasurement of positi	ion of process	ing point-Post process
and on-machine measu	urement of dimensional features ar	nd surface-mechanical a	nd optical mea	asuring systems.
 James D.Meadows, Norio Taniguchi, " 				

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
MTD33	Reliability Engineering	3L-0T-2P	4	None		
Course Outcome:						
On completion	n of this course, the student shall	be able to acquire good	knowledge or	reliability of products		
through the fa	ailure concepts, failure distributior	ns, Serial & parallel sys	tems and their	risk assessment.		
Course Contents:	4					
UNIT I Reliability Co	oncept					
Reliability function - f	àilure rate - Mean Time Between	Failures (MTBF) - Me	an Time to Fai	ilure (MTTF) - a priori		
and a posteriori concep	ot - mortality curve - useful life av	ailability - maintainabil	ity - system ef	fectiveness.		
UNIT II Reliability D	Data Analysis					
Time-to-failure distrib	outions - Exponential, normal,	Gamma, Weibull, ran	king of data	- probability plotting		
techniques - Hazard pl	otting.					
UNIT III Reliability	UNIT III Reliability Prediction Models					
Series and parallel systems - RBD approach - Standby systems - m/n configuration - Application of Baye's theorem -						
cut and tie set method	- Markov analysis - FTA - Limitat	tions.				
UNIT IV Reliability	UNIT IV Reliability Management					

UNIT IV Reliability Management

Reliability testing - Reliability growth monitoring - Non parametric methods - Reliability and life cycle costs -

Reliability allocation - Replacement model.

UNIT V Risk Assessment

Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

Suggested Readings:

- 1. Modarres, " Reliability and Risk analysis ", Mara Dekker Inc.,
- 2. John Davidson, "The Reliability of Mechanical system ", Institution of Mechanical Engineers.
- 3. C.O. Smith, "Introduction to Reliability in Design ", McGraw Hill.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD34	Real Time Systems And Software Development	3L-0T-2P	4	None
Course Outcome:	<u> </u>	I	I	L
• Understand t	he concepts of embedded computin	ng		
• Analyse the r	eal-time system requirements			
• Understand t	he connectivity technologies			
Course Contents: Unit I Introduction	: Real Time Systems - Embedd	ed Systems - Pervasiv	e Computing	- Information Access
Devices - Smart Cards	s -Embedded Controllers - Hardwa	re Fundamentals.		
Unit II RTOS : Rea	l Time Operating Systems - Mem	ory Management - Pro	ocesses, Thread	ds, Interrupts, Events -
User Interface.				
Unit III REAL TIM	E UML: Requirements Analysis	- Object Identification	strategies - O	bject Behavior - Real-
Time Design Patterns				
Unit IV SOFTWA	RE DEVELOPMENT: Concur	rency - Exceptions -	Tools - Deb	ougging Techniques -
Optimization - Case S	tudies.			
Unit V CONNECT	IVITY: Wireless Connectivity -	Blue Tooth - Other	Short Range	Protocols - Wireless
Application Environm	ent – Service Discovery – Middle	ware.		
 R.J.A. Buhr, B.P.Douglass D.E. Simon, 	lante, "Real time system design an D.L.Bailey, "An Introduction to R s, " Real-Time UML", Addison-W "An Embedded Software Primer " fobile Communications ", Addisor	eal-Time Systems ", Pr esley. , Addison-Wesley.		

6. V.Hansmann, L.Merk, M.S. Nicklous, T.Stober, "Prevasive Computing Handbook ", Springer.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD35	Concepts in Electronics	3L-0T-2P	4	None
	Engineering			
Course Outcome:				
Upon completion	of this course the student shall be	able to:		
• To understan	nd the basics and working principle	s of electronic compone	ents and their a	pplications
Course Contents: UNIT I ELECTRON	NIC COMPONENTS AND DEVI	ICES		
Resistors, Capacitors, Inductors, Transformers - types and properties,- Junction diodes, Zener diodes, Bipolar				
transistors, Field Effect transistors, Uni junction Transistors, MOS Devices, LEDs - Characteristics and				
applications; Thyristo	or Devices – SCR, DIAC, TRIAC	C, QUADRAC – opera	ting mechanis	m, characteristics and

applications.

UNIT II ANALOG ELECTRONICS

Rectifiers and Filters; Regulated Power Supply – Switching Power Supplies, Thermal Considerations, Feedback and power amplifiers, Sine wave oscillators,

UNIT III OPERATIONAL AMPLIFIERS AND APPLICATIONS

Operational amplifiers – Principles, Specifications, characteristics and applications. Arithmetic Operations, Integrator, Differentiator, Comparator, Schmitt Trigger, Instrumentation Amplifier, Active filters, Linear Rectifiers, Weiseferm Concenters, D/A concenters

Waveform Generators, D/A converters.

UNIT IV DIGITAL ELECTRONICS

Number systems – Logic gates – Boolean algebra – Simplification of Boolean functions using Map method. Tabulation method – Combinational logic circuits: Full adder, Code Converters, Multiplexers, Decoders – Sequential logic circuits: Flip-flops, Counters, Shift registers – A/D Converters.

UNIT V TEST AND MEASURING INSTRUMENTS

Measurement of voltage, current ,frequency and power using Multi meters , oscilloscopes, recorders, data loggers, signal sources, counters, analyzers and printers.

Suggested Readings:

- 1. Mill Man and Halkias":Electron devices and circuits" McGraw-Hill
- 2. Jocob Mill Man, "Micro electronics Digital and Analog circuits & Systems", McGraw-Hill.
- 3. Ray & Chaudary, "Linear Integrated Circuits", New Age.
- 4. Malvino& Leach, "Digital Principals & application", TMH.
- 5. Helfrick A.D and Cooper .W. D. "Modern Electronic Instrumentation and Measurements Techniques" Printice Hall.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
MTD36	Machine Vision	3L-0T-2P	4	None
Course Outcome:	of this course the student shall b	a abla tay		
-	owledge on imaging, machine vi	sion and its applications.		
Course Contents: UNIT I INTRODUC	ΓΙΟΝ			
Human vision – Mach	ine vision and Computer vision	- Benefits of machine vi	sion – Block d	iagram and function of
machine vision system	implementation of industrial matrix	achine vision system – P	hysics of Ligh	t – Interactions of light
- Refraction at a spher	ical surface – Thin Lens Equation	n		
UNIT II IMAGE AC	QUISITION			
Scene constraints – Lig	ghting parameters – Lighting so	urces, Selection – Lightin	ng Techniques	- Types and Selection
- Machine Vision Ler	uses and Optical Filters, Specific	cations and Selection – I	maging Senso	rs – CCD and CMOS,
Specifications - Inter	face Architectures – Analog an	nd Digital Cameras – I	Digital Camera	a Interfaces – Camera
Computer Interfaces, S	Specifications and Selection – Ge	eometrical Image formati	on models – C	amera Calibration
UNIT III IMAGE PR	ROCESSING			
Machine Vision Softv	vare – Fundamentals of Digital	Image – Image Acquis	sition Modes -	- Image Processing in
Spatial and Frequency	Domain – Point Operation, The	esholding, Grayscale Str	retching – Nei	ghborhood Operations,
Image Smoothing and	Sharpening – Edge Detection –	Binary Morphology – Co	lor image proc	cessing.
UNIT IV IMAGE AN	ALYSIS			
Feature extraction -	Region Features, Shape and S	ize features – Texture	Analysis – Te	emplate Matching and
Classification – 3D Ma	achine Vision Techniques – Dec	ision Making.		
UNIT V MACHINE	VISION APPLICATIONS			
Machine vision applic	cations in manufacturing, electr	onics, printing, pharmac	eutical, textile	e, applications in non-
	ology and gauging,OCR and OC			
Agricultural, and Bio r	nedical field, augmented reality,	surveillance, bio-metrics	5.	
Suggested Readings:				

1. EmanueleTrucco, Alessandro Verri, "Introductory Techniques For 3D Computer Vision", Prentice Hall.

2. Rafael C.Gonzales, Richard.E.Woods, "Digital Image Processing", Addison-Wesley

3. Alexander Hornberg, "Handbook of Machine Vision", Wiley-VCH

4. Eugene Hecht, A.R. Ganesan"Optics", Pearson Education India.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

COURSE CONTENTS OF OPEN ELECTIVES

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO001	Technical Communication	3L-1T-0P	4	None
	(TC)			
Course Outcome:				
a) The course will im	prove writing and documentation sl	kills of students with en	nphasis on the	importance of
	ion with focus on choice of words,			
	he students capability to prepare te			
	ip the student with good communi			ng SOPs and CVs.
d) The course will set	sitize the students towards research	h ethics, copyright and	plagiarism.	
Course Contents:				
Course Structure				
	f communication, meaning, importa	ance & process of comm	nunication, obj	jectives, types, C's of
 communicat human & no Business conpurchase, en Emphasis or 	f communication, meaning, importa- ion, barriers to communication n -human communication, distincti- respondence-definition, meaning au quiry, quotation, order, followup, a (i) paragraph writing, its kinds, co (ii) writing a paragraph/thesis: sele (iii) writing reports, manuals, notice (iv) Interviews, speeches, presentat thodologies, copyright, plagiarism	ve features of human la nd importance of busine cceptance-refusal herence & cohesion ction of topic and its do es, memos, agendas, mi	nguages ess communica evelopment	
communicat human & no Business con purchase, en Emphasis or <u>Research ethics, me</u> Suggested Readings	ion, barriers to communication n -human communication, distincti respondence-definition, meaning an quiry, quotation, order, followup, a (i) paragraph writing, its kinds, co (ii) writing a paragraph/thesis: sele (iii) writing reports, manuals, notice (iv) Interviews, speeches, presentat thodologies, copyright, plagiarism	ve features of human la nd importance of busine cceptance-refusal herence & cohesion ction of topic and its do es, memos, agendas, mi	nguages ess communica evelopment	
communicat human & no Business con purchase, en Emphasis or <u>Research ethics, me</u> Suggested Readings 1. Advanced E	ion, barriers to communication n -human communication, distincti respondence-definition, meaning an quiry, quotation, order, followup, a (i) paragraph writing, its kinds, co (ii) writing a paragraph/thesis: sele (iii) writing reports, manuals, notica (iv) Interviews, speeches, presentat thodologies, copyright, plagiarism	ve features of human la nd importance of busine cceptance-refusal herence & cohesion ction of topic and its do es, memos, agendas, mi ions,	nguages ess communica evelopment inutes	ation, business letters

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
EO002	Disaster Management	3L-1T-0P	4	None		
Course Outcome:						
Demonstrate	• Demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.					
Critically eva	luate disaster risk reduction and hu	umanitarian response p	olicy and pract	ice from multiple		
perspectives.						
	nderstanding of standards of huma	initarian response and p	ractical releva	nce in specific types		
of disasters as	nd conflict situations.					
	lerstand the strengths and weaknes	5	••			
programming	in different countries, particularly	their home country or	the countries t	hey work in.		
Course Contents:						
Unit -I: Introduction						
-	Factors And Significance; Different	nce Between Hazard A	nd Disaster; N	Natural And Manmade		
-	Nature, Types And Magnitude.					
Repercussions Of Dis	asters And Hazards: Economic D	amage, Loss Of Huma	in And Anima	l Life, Destruction Of		
Ecosystem.						
	thquakes, Volcanisms, Cyclones,					
	le disaster: Nuclear Reactor Meltd	own, Industrial Accide	nts, Oil Slicks	And Spills, Outbreaks		
1	mics, War And Conflicts.					
Unit -II: Disaster Pro	one Areas In India					
	nes; Areas Prone To Floods And					
-	Hazards With Special Reference	Го Tsunami; Post-Disas	ter Diseases A	nd Epidemics		
	eparedness And Management					
Preparedness: Monito	ring Of Phenomena Triggering A	Disaster Or Hazard;	Evaluation Of	Risk: Application Of		

Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit -IV: Risk Assessment

Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

Unit -V: Disaster Mitigation

Meaning, Concept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In India.

Suggested Readings:

1. R. Nishith,AK Singh, "Disaster Management in India:Perspectives, issues and strategies" New Royal book Company.

2., Pardeep Sahni Et.Al. "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India.

3. Goel S. L., "Disaster Administration And Management: Text And Case Studies", Deep &Deep Publication Pvt. Ltd.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO003	Basics of Financial	3L-1T-0P	4	None
	Management			

Course Outcome:

The course's objective is to provide a theoretical framework for considering corporate finance problems and issues and to apply these concepts in practice. In this course, you will enhance your knowledge and understanding of financial management. You will learn how managers should organize their financial transactions effectively and with integrity and how to give everybody the ability and confidence to tackle common financial problems in practice. It will also provide adequate preparation for future finance classes.

Course Contents:

Unit I: Nature, scope and objectives of financial management, Time value of money, Risk and return (including Capital Asset Pricing Model).

Unit II: Long term investment decisions: The Capital Budgeting Process, Cash Flow Estimation, Payback Period Method, Accounting Rate of Return, Net Present Value (NPV), Net Terminal Value, Internal Rate of Return (IRR), Profitability Index.

Unit III: Financing Decisions: Sources of long-term financing, Estimation of components of cost of capital, Methods for calculating Cost of Equity, Cost of Retained Earnings, Cost of Debt and Cost of Preference Capital, Weighted Average Cost of Capital (WACC). Capital Structure- Theories of Capital Structure (Net Income, Net Operating Income, MM Hypothesis, Traditional Approach). Operating and Financial leverage. Determinants of capital structure

Unit IV: Dividend Decisions: Theories for Relevance and irrelevance of dividend decision for corporate valuation-Walter's Model, Gordon's Model, MM Approach, Cash and stock dividends. Dividend policies in practice.

Unit V: Working Capital Decisions: Concepts of Working Capital, Operating & Cash Cycles, sources of short term finance, working capital estimation, cash management, receivables management, inventory management.

Suggested Readings:

11. M.Y Khan, P.K. Jain, "Financial Management: Text and Problems", Tata McGraw Hill.

2. Rajiv Srivastava, Anil Mishra, "Financial Management", Oxford University Press, UK.

3. P. Cha ndra, "Financial Management-Theory and Practice", Tata McGraw Hill.

4. James C, VanHorne, John M. Wachowicz, "Fundamentals of Financial Management", Pearson Education.

SCHEME OF COURSES - M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
EO004	Basics of Human Resource	3L-1T-0P	4	None		
	Management					
Course Outcome:	Course Outcome:					
This course is designe	d to provide students with an unde	erstanding of human res	ource manager	ment (HRM) functions		
within organizations, i	ncluding an appreciation of the ro	les of both HRM speci	alists and line	managers in designing		
and implementing effe	ctive HRM policies and practices.					
Course Contents:						
	nd growth of human resource ma					
and Human relations	approaches).Role of HR in strates	gic management.Natur	e.objectives, so	cope, and functions of		
HR management.						
e	of HR (the changing profile of the					
in BPOs, IT and servi	ce industries, Flexi options), Worl	kforce diversity (cause	s, paradox, res	olution of diversity by		
management).						
	nan resource management as a pr	1	line-staff in th	ne structure of human		
1	nd the role of human resource man	0				
-	er planning -objectives, elements,	• •	ob design - (s	implification, rotation,		
	enlargement, enrichment and approaches}.Job analysis.Job evaluation.					
	Unit - V : Recruitment (factors affecting, sources, policy, evaluation). Selection(procedure, tests, interviews).					
Placement and Induction.						
Suggested Readings:						
11 .	man Resource and Personnel Man	C ·	w-Hill			
2 T N Chhabra "Hi	iman Resource Management" Dha	annat Rai and Co				

2. T.N. Chhabra, "Human Resource Management", Dhanpat Rai and Co. 3. Saiyadain S. Mirza, "Human Resource Management", Tata Mc-GrawHill.

4. N.K.Chadha, "Human Resource Management-issues, case studies, experiential exercises", Sri Sai Printographers.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO005	Project Management	3L-1T-0P	4	None

Course Outcome:

In this comprehensive course, student will learn the fundamentals of project management: how to initiate, plan, and execute a project that meets objectives and satisfies stakeholders. This course provides a step-by-step guide to planning and executing a project and to develop a manageable project schedule.

Course Contents:

Unit-I: Objectives of Project Planning, monitoring and control of investment projects. Relevance of social cost benefit analysis, identification of investment opportunities. Pre-feasibility studies.

Unit-II: Project Preparation: Technical feasibility, estimation of costs, demand analysis and commercial viability, risk analysis, collaboration arrangements; financial planning; Estimation of fund requirements, sources of funds.Loan syndication for the projects.Tax considerations in project preparation and the legal aspects.

Unit-III: Project appraisal: Business criterion of growth, liquidity and profitability, social cost benefit analysis in public and private sectors, investment criterion and choice of techniques. Estimation of shadow prices and social discount rate.

Unit-IV: Project review/control-Evaluation of project.PERT/CPM.resource handling/leveling.

Unit-V: Cost and Time Management issues in Project planning and management, success criteria and success factors, risk management.

Suggested Readings:

1. Ravi Ravindran, "Operations Research and Management Science Handbook" CRC Press.

2. Harold Kerzner, "Applied Project Management: Best Practices on Implementation", John Wiley & Sons, Inc.

3. Goodpasture, J. C. "Quantitative Methods in Project Management," J Ross Publishing,

4. Meredith, J. R. and Mantel Jr., S. J. "Project Management: A Managerial Approach", John Wiley

5. Clifford Gray, "Project Management: The Managerial Process"" McGraw Hill Higher Education.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO006	Basics of Corporate Law	3L-1T-0P	4	None

Course Outcome:

The objective of this Course is to provide in-depth knowledge of the Corporate laws and process related to integrate these aspects of management studies in decision making within an organization; analyze and interpret management information; make decisions based on the information available; communicate information effectively; understand and apply the theoretical aspects of accounting methods used for collecting, recording and reporting financial information; explain and appraise the taxation laws which govern corporations and individuals.

Course Contents:

Unit I: Introduction : Administration of Company Law, characteristics of a company; common seal; lifting of corporate veil; types of companies including private and public company, government company, foreign company, one person company, small company, associate company, dormant company, producer company; association not for profit; illegal association; formation of company, promoters and their legal position, pre incorporation contract and provisional contracts; on-line registration of a company.

Unit II: Documents: Memorandum of association and its alteration, articles of association and its alteration, doctrine of constructive notice and indoor management, prospectus, shelf prospectus and red herring prospectus, misstatement in a prospectus; GDR; book building; issue, allotment and forfeiture of shares, calls on shares; public offer and private placement; issue of sweat capital; employee stock options; issue of bonus shares; transmission of shares, buyback and provisions regarding buyback; share certificate; D-Mat system; membership of a company.

Unit III: Management and Meetings: Classification of directors, additional, alternate and adhoc director; women directors, independent director, small shareholders' director; director identity number (DIN); appointment, who can appoint a director, disqualifications, removal of directors; legal position, powers and duties; key managerial personnel, managing director, manager; meetings of shareholders and board; types of meeting, convening and conduct of meetings, requisites of a valid meeting; postal ballot, meeting through video conferencing, e-voting; committees of board of directors – audit committee, nomination and remuneration committee, stakeholders relationship committee, corporate social responsibility committee; prohibition of insider trading.

Suggested Readings:

1. Hicks, Andrew & Goo S.H., "Cases and Material on Company Law", Oxford University Press

- 2. Gowar, LCB, "Principles of Modern Company Law", Stevens & Sons, London.
- 3. Majumdar, A.K., and G.K. "Kapoor, Company Law and Practic", Taxmann
- 4. Hanningan, Brenda, "Company Law", Oxford University Press

5. Sharma, J.P., "An Easy Approach to Corporate Laws", Ane Books Pvt. Ltd.

9. Ramaiya, "A Guide to Companies Act", LexisNexis Buttersworthwadhwa.

6. Kannal, S., & V.S. Sowrirajan, "Company Law Procedure", Taxman's Allied Services (P) Ltd.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
EO007	Biological Computing	3L-1T-0P	4	None		
Course Outcome:						
1. To understand comp	outing in context of biological syst	ems				
2. To understand comp	outing languages needed to solve b	iological problems				
3. To acquire computa	tional skills for analysis of biologi	cal processes through g	grid computing			
4. To gain knowledge	of different biological databases an	nd their usage				
5. To gain innovative i	nsight into DNA computing					
Course Contents:						
Python: Introduction to	Variables and Control flow, Pyth	on II - Parsing In and (Output,			
Python III - Scripting	and Functions, Python IV- Numbe	er Crunching and Plotti	ng,			
Grid computing, Biogr	id, R basics and Visualization, Un	ix for fast text processi	ng, SQL Data	base		
Biological databases, I	R for speed, R for fun, Local BLAS	ST, Unit Testing and C	ode Correctnes	S		
DNA computing,						
Introduction, Orientati	on and UNIX,					
Suggested Readings:						
1. H. Bolouri, R	. Paton, "Computations in cells &	tissues", Springer				
2. Haubold Berr	2. Haubold Bernhard, Wiehe Thomas, "Introduction to Computational Biology: An Evolutionary Approach".					
Springer.		-				

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
EO008	Basic of social science	3L-1T-0P	4	None		
Course Outcome:						
Sociology is a major	category of academic disciplin	es, concerned with so	ociety and the	relationships among		
individuals within a so	ciety. It in turn has many branches	s, each of which is cons	idered a "socia	ıl science".		
Course Contents:						
Unit I: Economics,	political science, human geogra	phy, demography and	d sociology.			
	s, anthropology, archaeology, ju			and linguistic.		
Unit III: Political sc	vience, economics, sociology, in	nternational politics a	nd scientific 1	methodology.		
Suggested Readings:						
1. Beteille Andr	1. Beteille Andre, "Sociology: Essays in Approach and Method", Oxford University Press.					
2. Anthony Giddens, "Sociology", Polity Press, Chap 17.						
3. Max Weber, "The Methodology of the Social Sciences", New York: Free Press.						
	"The Rules of Sociological Metho					

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO009	ENTREPRENEURSHIP	3L-1T-0P	4	None
-				

Course Outcome:

This Course Aims at Instituting Entrepreneurial skills in the students by giving an overview of who the entrepreneurs are and what competences are needed to become an entrepreneur.

Course Contents:

Unit I-Introduction:

Concept and Definitions, Entrepreneur v/s Intrapreneur; Role of entrepreneurship in economic development; Entrepreneurship process; Factors impacting emergence of entrepreneurship; Managerial versus entrepreneurial Decision Making; Entrepreneur v/s Investors; Entrepreneurial attributes and characteristics; Entrepreneurs versus inventors; Entrepreneurial Culture; Women Entrepreneurs; Social Entrepreneurship; Classification and Types of Entrepreneurs; EDP Programmes; Entrepreneurial Training; Traits/Qualities of an Entrepreneurs.

Unit II- Creating Entrepreneurial Venture:

Generating Business idea- Sources of Innovation, methods of generating ideas, Creativity and Entrepreneurship; Challenges in managing innovation; Business planning process; Drawing business plan; Business plan failures; Entrepreneurial leadership- components of entrepreneurial leadership; Entrepreneurial Challenges; Legal issues – forming business entity, considerations and Criteria, requirements for formation of a Private/Public Limited Company, Intellectual Property Protection- Patents Trademarks and Copyrights – importance for startups, Legal Acts Governing Business in India.

Unit III-Functional plans:

Marketing plan– for the new venture, environmental analysis, steps in preparing marketing plan, marketing mix, contingency planning; Organizational plan – designing organization structure and Systems; Financial plan – pro forma income statements, pro forma cash budget, funds Flow and Cash flow statements; Pro forma balance sheet; Break Even Analysis; Ratio Analysis.

Unit IV- Entrepreneurial Finance:

Debt or equity financing, Sources of Finance- Commercial banks, private placements, venture capital, financial institutions supporting entrepreneurs; Lease Financing; Funding opportunities for Startups in India.

Unit V- Enterprise Management:

Managing growth and sustenance- growth norms; Factors for growth; Time management, Negotiations, Joint ventures, Mergers & acquisitions.

Suggested Readings:

1. Kumar, Arya, "Entrepreneurship: Creating and Leading an Entrepreneurial Organization", Pearson.

2. Hishrich., Peters, "Entrepreneurship: Starting, Developing and Managing a New Enterprise", Irwin Publishing Ltd.

3. 4. Barringer, Brace R., and R. Duane Ireland, "Entrepreneurship", Pearson Prentice Hall.

5. Hisrich, Robert D., Michael Peters and Dean Shephered, "Entrepreneurship", Tata McGraw Hill

6. Lall, Madhurima, and ShikhaSahai, "Entrepreneurship", Excel Books.

7. Charantimath, Poornima, "Entrepreneurship Development and Small Business Enterprises", Pearson Education,

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO010	Social work	3L-1T-0P	4	None
Common Orate common				

Course Outcome:

In this course students will learn about various methods of social work, about community organization, social welfare administration, Problems pertaining to Marriage, Family and caste

Course Contents:

Unit 1.Social work: Philosophy and Methods. Social work: Meaning, Objectives, Scope, Assumptions & Values; History of Social work in U.K. U.S.A.and India, philosophy of Social Work. Democratic (Equality, Justice Liberty & Fraternity) and Humanitarian (Human Rights) Matrix.Social works as а profession. Unit 2. Methods of Social work: Meaning, Scope Principles, Processes (Psychosocial study, Assessments, treatment-goal formulation and techniques), Evaluation, Follow-up and Rehabilitation. Social Groups work: Meaning, Objective, Principles, Skills, Processes (Study, Diagnosis, treatment and evaluation), Programme, Planningand Development, Role of Social group worker, Leadership Development.

Unit 3 Community organization: Meaning, Objective, Principles, Approaches, Roles of Community Organization Worker.

Unit 4 Social Welfare Administration: Meaning Scope, Auspices-Private and Public, Principles, Basic Administrative Processes and Practice decision making communication, planning.organisation, budgeting and finacial control, reporting. Social work Research: Meaning objectives, types, scope, scientific method, Selection and formulation of the problem Research Design Sampling, Sources and Methods of Data Collection, Processing of Data, analysing and interpretation, Report writing. Social Action: Meaning,Scope, approaches (Sarvodays, Antyodaya etc.) and Strategies.

Unit 5 Work in India Problem pertaining to Marriage, Family and caste: Dowry- child Marriage, Divorce, Families with working couples, Disorganised Families, Families with Emigrant Heads of the Households, Gender Inequality, Authoritarian Family structure, Major Changes in Caste systems and problem of casteism. Problems Pertaining of Weaker Sections. Problems of Children, Women Aged. Handicapped and Backward Classes (SCs, STs, and other Backward Classes). **Problems of Deviance:** Truancy Vagrancy and Juvenile Delinquency, Crime, White Colla Crime, Organized Crime, Collective Violence, Terrorism, Prostitution and Sex Related Crimes. Social Vices: Alcohilism. Drug Addiction, Beggary, Corruption and communalism. **Problems of Social Structure** : Poverty, Unemployment, Bonded Labour, Child Labour. **Fields of Social work India** : Child Development, Development of Youth, Women's Empowerment, Welfare of aged, Welfare of Physically. Mentally and Social Handicapped, Welfare of backward Classes (Scs, STs and Other Backward Classes) Rural Development Urban Community Development, Medical And Psychiatric Social work, Industrial Social work, Social Security offender Reforms.

Suggested Readings:

- 1. RajniBedi, "Social Work: An Introductory Text Book", Regal Publications
- 2. Sanjay Bhattacharya, " Social Work: An Integrated Approach" Deep and Deep publication
- 3. NiteshDhawan, "Social work perspective Philosophy and Methods", Bharat Book Centre.
- 4. P. R. Gautam, "Social Work: Methods Practices And Perspectives", Centrum Press

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO011	Intellectual property and Patenting	3L-1T-0P	4	None
Course Outcome:	Course is to provide in-depth k	norreladors of the lorrer	and measure a	alatad ta Tuadamanlua

The objective of this Course is to provide in-depth knowledge of the laws and process related to Trademarks, Copyrights and other forms of IPs with focus on Patents, the Indian and International Patent filing procedure, drafting patent application and conducting prior art searches. Students will be exposed to the technical, management and legal aspects of IP and Patents.

Course Contents:

UNIT I: Introduction: Historical and philosophical background of patents and other intellectual property, Patent System: the Constitution, Congress, Patent Office (PTO), and courts; Analyzing and understanding judicial opinions **UNITII: Comparative overview of patents, copyrights, trade secrets, and trademarks:** Legal fundamentals of patent protection for useful inventions, Design and plant patents, Legal fundamentals of copyright protection, Similarity and access, Expression vs. ideas and information, merger, Fair use of copyrighted works (e.g., for classroom use), Contributory copyright infringement, Critical differences between patent and copyright protection, Copyright infringement distinguished from plagiarism, Legal fundamentals of trade-secret protection, Legal

fundamentals of trademark protection

UNIT III: Requirements and limitations of patentability: New and useful: (A) The legal requirement of novelty (B) First to invent vs. first inventor to file, The legal requirement of non-obviousness.

UNIT IV: The process of applying for a patent ("patent prosecution"): Anatomy of a patent application, Adequate disclosure, The art of drafting patent claims, Patent searching: (A) Purposes and techniques, Actions for patent infringement, Interpretation of claims, Doctrine of equivalents, Product testing as a possibly infringing use, Doctrine of exhaustion

Suggested Readings:

1. Rines, Robert H., "Create or Perish: The Case for Inventions and Patents", Acropolis.

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO012	Supply Chain Management	3L-1T-0P	4	None
	and Logistics			

Course Outcome:

Supply chain management consist of all parties (including manufacturer, marketer, suppliers, transporters, warehouses, retailers and even customers) directly or indirectly involved in fulfillment of a customer. The main objective is to acquaint the students with the concepts and tools of supply chain management and logistics as relevant for a business firm.

Course Contents: Unit I

Introduction: Concept of supply chain management (SCM) and trade logistics; Scope of logistics; Logistic activities – an Overview; Contribution of logistics at macro and micro levels; SCM and trade logistics; Business view of SCM; Concept, span and process of integrated SCM; Demand management – methods of forecasting; Supply chain metrics (KPIs), performance measurement and continuous improvement; Product development Process and SCM; Strategic role of purchasing in the supply chain and total customer satisfaction; Types of purchases; Purchasing cycle.

Unit II

Managing Relationship: Role of Relationship marketing in SCM; Managing relationships with suppliers and customers; Captive buyers and suppliers; Strategic partnerships; Supplier-retailer collaboration and alliances. **Unit III**

Focus Areas of Logistics and Supply Chain management: Transportation-Importance of effective transportation system; Service choices and their characteristics; inter-modal services; Transport cost characteristics and rate fixation; In-company management vs. out-sourcing; World sea borne trade; International shipping- characteristics and structure; Liner and tramp operations; Liner freighting; Chartering-Types, principles and practices; Development in sea transportation-Unitization, containerisation, inter and multimodal transport; CFC and ICD. Air transport: Set up for air transport and freight rates; Carriage of Goods by sea -Role and types of cargo intermediaries. Warehousing and inventory management: Reasons for warehousing; Warehousing evaluation and requirements; Warehousing location strategies; Inventory management principles and approaches; Inventory categories -EOQ, LT, ICC

Unit IV

IT Enabling Logistics and Supply Chain: Technology in logistics – EDI, bar Coding, RFID etc., data warehousing, electronic payment transfers; Business management systems; TRADITIONAL ERP, SPECIAL ERP, MR, DRP, PDM, EIP, CPFR, WMS, TMS; Re-engineering the supply chain- Future directions. **Unit V**

Trends and Challenges in logistics and supply chain management: Third party logistic outsourcing –challenges and future directions.

Suggested Readings:

1. M. Christopher, "Logistics and Supply Chain Management", Prentice Hall.

2. Handfield and Nicholas, Jr., "Introduction to Supply Chain Management", Prentice Hall.

3. Jhon J Coyle, C., Brian J Gibs, "Logistics approach to Supply Chain Management", Cengage Learning.

m•41

641 0

. .

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite				
EO013	ORGANISATION	3L-1T-0P	4	None				
	DEVELOPMENT							
Course Outcome:	Course Outcome:							
Organization Develop	Organization Development is a growing field of Human Resource Management. It has its foundations in a number							
of behavioral and socia	al sciences.							
furnction as systems; i 2. Interpersonal and C opportunities in order problem-solving and d 3. Introduction to Orga	ems and Human Behaviour - Deve ntroducing and discussing various onsulting Skills - Increasing effect to increase self-awareness, practise levelop basic consulting and interv anization Development - Introducin ent, especially those relating to the	theoretical approaches iveness as a change age e alternative ways ofap iewing skills. ng some basic theories,	and issues. ent by providin proaching pers models and m	g a variety of onal and interpersonal ethods in the field of				
4. Intervention and Ch	nange in Organizations - Consolida	ating and further develo	ping consultin	g skills and strategies				
5. Action Research Project - Carrying out a change activity in an organization, while also researching the effects and lor the process. This provides participants with an opporfunity to consolidate andde,monstrate skills and knowledge gained in other units of the course								
OD and	n Cheung-Judge, Linda Holbech HR", Kogan Page. neberg, "Organization Developme	-	-					

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO014	Industrial organisation and	3L-1T-0P	4	None
	managerial economics			
Course Outcome:	·	·		
This course h	elp students in understanding the b	basics of management a	nd Industrial o	rganisation.
Course Contents:				
Unit I: Principles of n	nanagement, General idea, various	functions, scope of eng	gineering. Orga	inisation structure,
Types, merits and dem	erits.			
	on and layout, Factors effecting l g and control of production. Sch ethods of rating.			
decision making and t	a of personnel management, Indu forward planning. Demand and de pital, management. Analysis of inte	emand forcasting of pro	oduction analy	sis- prices and pricing
Suggested Readings: 1. Koutsoyiar	nnisA, "Modern Microeconomics	", Palgrave Macmillan.		
2. D.N. Dwi	vedi, " Managerial Economics", S	Chand (G/L) & Comp	any Ltd;	
3. Maheshwa	ri., "Managerial Economics", PHI			

4. Ruddardutt and K.P.M.Sundharam, "Indian economy", S Chand

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite		
EO015	Global Strategies and	3L-1T-0P	4	None		
	Technology					
Course Outcome:						
This subject focuses	on the specifics of strategy and o	organization of the mu	ltinational cor	npany, and provides a		
framework for formul	ating successful and adaptive strate	egies in an increasingly	complex worl	d economy.		
Course Contents:						
Globalization of indu	stries, the continuing role of cou	untry factors in compe	tition, organiz	ation of multinational		
enterprises, and buildi	ing global networks, Analysis of c	competitive situations fi	rom the genera	l management point of		
view, including fit be	etween key environmental forces	and the firm's resourc	es, and chang	es in these over time.		
Formulating and implementing strategy based on that analysis. Developing and leveraging a firm's core						
competencies to gain long-term sustainable advantage.						
Suggested Readings:						
66 6	obal strategy", South-Western Col	lege Pub.				
2. Pankai Ghemawat.	"Redefining Global Strategy". Har	rvard Business Review	Press			

Pankaj Ghemawat, "Redefining Global Strategy", Harvard Business Review Press
 Cornelis A. de Kluyver, "Fundamentals of Global Strategy", Business Expert Press.

Passed in the meeting of standing committee on Academic matters held on June 3, 2016

SCHEME OF COURSES – M.TECH. (MECHATRONICS)

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite			
EO016	Engineering System analysis	3L-1T-0P	4	None			
	and Design						
Course Outcome:	Course Outcome:						
The students will learn	n about system definitions and role	e of system analyst. Th	ey will learn a	bout system modeling			
and design. They will	be exposed to System Implementat	tion and Maintenance i	ssues.				
Course Contents:							
Unit 1: System definit	tion and concepts: Characteristics a	and types of system, Ma	anual and auto	mated systems			
Real-life Business su	b-systems: Production, Marketin	g, Personal, Material,	finance Syst	ems models types of			
models: Systems envi	ronment and boundaries, Real tir	ne and distributed sys	tems, Basic p	rinciples of successful			
systems							
Unit 2: Systems anal	yst: Role and need of systems an	alyst, Qualifications an	nd responsibili	ties, Systems Analyst,			
agent of change.							
	ems development life cycle: Analy						
	gn and modeling:Process model						
	nd structured charts, Data flow dia						
e	diagrams. Data Modeling and syst	ems analysis, designin	g the internals	: Program and Process			
design, Designing Dis							
	Unit 4: User Interfaces - Relational Analysis - Database design - program design - structure chart - HIPO -						
	SSADM – Alternate Life cycles – Prototypes.						
• •	Unit 5: System Implementation and Maintenance:Planning considerations, Conversion methods, producers and						
	ptance Criteria, System evaluation	1	sting and valid	ation, Systems qualify			
Control and assurance	, Maintenance activities and issues						

Suggested Readings:

Haryszkiewycz, "Introduction to Systems Analysis and Design", PHI.
 James A Senn, "Analysis and Design of Information Systems," McGraw Hill.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite			
EO017	Biology For Engineers	3L-1T-0P	4	None			
Course Outcome:	Course Outcome:						
1. General understandi	ng of organization in biological sy	vstems					
	lge of functioning in biological sys						
3. Clarity about releva	nce of Biology to engineering grad	luates					
4. Understanding hum	an body or any other suitable orga	nism as a study-model	for engineering	g students.			
5. Understanding elect	5. Understanding electrical, chemical and magnetic forces, and communication networks in biosystem.						
Course Contents:							
The Biological system - An Introduction; Biomolecules &self assemblies; Molecular recognition; Bioenergetics							
Communication network in biosystem; Mechanics in biology; Storage, preservation and propagation of biological							
information; Biomaterials in engineering applications; Organisms as factories for biomaterials; Engineering							
organisms for novel ap	oplications						

Suggested Readings:

- 1. T. Johnson, "Biology for Engineers", CRC Press
- 2. Michael Small, "Dynamics of Biological system", CRC Press
- 3. Johnny T. Ottesen, MS Olufsen JK Larsen, "Applied Mathematical Models and Human Physiology", Society for Industrial and Applied Mathematics,
- 4. Michael Roberts, Michael Jonathan Reiss, Grace Monger, "Advanced Biology", Nelson Thornes.
- 5. Hermann Remmer, "Ecology: A Textbook", Springer.
- 6. Colin Ratledge, Bjorn Kristiansen, "Basic Biotechnology", Cambridge University Press.

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO018	Energy, Environment and Society	3L-1T-0P	4	None
Course Outcome:		•		
1. To be able to assess	s the energy resources available wo	orldwide		
2. To understand the r	negative impact of conventional en	ergy resource utilization	n on ecosystem	1
3. To learn about varie	ous types of pollutions and their co	ontrol strategies		
4. To understand rene	wable energy resources and their s	ocio-economic impac		
Course Contents:				
Introduction to Enviro	onment, Energy and its impact on s	ociety		
Universe, Environmen	nt and Ecosystem: Origin of earth,	atmosphere, Origin of I	Life, Ecosyster	n, Biotic and abiotic
components, Ecologic	al pyramids, Food chain, Food we	b, Habitat and Niche, M	lajor ecosyster	ns, Atmosphere,
Biodiversity				
Pollution: Air Pollutio	on, Water Pollution, Soil Pollution,	Noise Pollution		
Energy: Different sou	rces of Energy, Renewable sources	s of energy, Non renewa	able energy,	
Bioenergy, Bioethano	l and Biodiesel			
Biofertilizers, Biopest	ticides and Biopolymers			
Environmental Ethics	and Morals			
Suggested Readings:				
	litor, Renewable Energy Engineeri	ng and Technology, Pri	nciples and Pr	actice, The Energy
	nstitute (TERI), 2009 d M. K. Ghosal, " Fundamentals of	Donomohlo Enonom Sou	waaz" Nanaza	Dubliching House
2. G. N. Tiwari and N.D,	I M. K. Ghosal, Fundamentals of	Renewable Energy Sol	urces, marosa	Publishing House,
	ogas Systems: Principles and Appl	ications", New Age Inte	ernational publ	lishers (P) Ltd
4. Nijaguna, B.T.,	Biogas Technology, New Age Inte	rnational publishers (P)	Ltd	
	Frank Kreith, Jan. F .Kreider, "Pri	nciples of Solar Engine	ering", 2nd Ed	ition, Taylor &
Francis.				
6. Rezaiyan. J and Taylor and Fran	N. P. Cheremisinoff, Gasification cis.	Technologies, " A Prim	er for Enginee	rs and Scientists"

Course No.	Title of the Course	Course structure	Credit	Pre-Requisite
EO019	Public Policy and	3L-1T-0P	4	None
	Governance			
Course Outcome:				
Students will be int	roduced to Public Policy and	Administrative govern	nance. They	will also learn about
Administrative Govern	nance.			
Course Contents:				
Unit 1 Introduction to	Public Policy and Administrative	Governance: Introduct	ion to nublic n	alian aconometrics for
	Tublic Folicy and Administrative	Governance. muoduci	ion to public p	oncy, econometries for
policy research, policy	analysis, economics for public de	ecision making.		
Unit ? Public Bure	aucracy in Theory and Practice	e Benefit cost analys	sis public bu	daeting revenue and
Unit 2 I done Durea	aderacy in Theory and Tractice	. Denent cost analys	sis, public bu	ageting, revenue and
expenditures, managin	g and leading public service organ	nisations.		
Unit 3 Administrative	e Governance: The Challenge of	Policy Implementatio	n, public and	non-profit programme
evaluation.				
	tors in Policy-making and Admit	nistrative Governance:	governance in	n twenty-first century
			•	
Social Diversity and th	ne Question of "Difference" in Pol	icy-making and admini	strative Gover	nance
Suggested Readings:				
1. John Shiel	ds and B. Mitchell Evans, " Sh	rinkingthe State: Glob	alization and	Public administration
U	Ialifax: Fernwood,			
2. Beryl Radi	n, , " Policy Analysis Reaches Mi	dlife, 2nd edition. Was	hington, DC: 0	Georgetown University
Press.				
3. Frank R. E	Baumgartner, Jeffrey M. Berry, M.	arie Hojnacki, and Dav	id C. Kimball,	"Lobbying and Polic

- 3. Frank R. Baumgartner, Jeffrey M. Berry, Marie Hojnacki, and David C. Kimball, "Lobbying and Policy Change: Who Wins, Who Loses, and Why", University of Chicago Press.
- 4. Timothy Conlan, Paul Posner, and David Beam (2015), "Pathways of Power: The dynamics of National Policymaking", Washington, DC: Georgetown University press.